|
|
|
import tensorflow |
|
from tensorflow import keras |
|
from keras.models import load_model |
|
model1 = load_model("inception.h5") |
|
|
|
img_width, img_height = 180, 180 |
|
class_names = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips'] |
|
num_classes = len(class_names) |
|
|
|
def predict_image(img): |
|
img_4d = img.reshape(-1, img_width, img_height, 3) |
|
prediction = model1.predict(img_4d)[0] |
|
return {class_names[i]: float(prediction[i]) for i in range(num_classes)} |
|
|
|
|
|
import gradio as gr |
|
image = gr.inputs.Image(shape=(img_height, img_width)) |
|
label = gr.outputs.Label(num_top_classes=num_classes) |
|
|
|
gr.Interface(fn=predict_image, inputs=image, outputs=label, title="Flower Classification using InceptionV3", interpretation='default').launch(debug='True', share='True') |
|
|