|
|
|
import tensorflow |
|
from tensorflow import keras |
|
from keras.models import load_model |
|
model1 = load_model("inception.h5") |
|
|
|
img_width, img_height = 180, 180 |
|
class_names = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips'] |
|
num_classes = len(class_names) |
|
|
|
def predict_image(img): |
|
img_4d = img.reshape(-1, img_width, img_height, 3) |
|
texts = ["Hey Tolulope, the model predicted: "] |
|
prediction = model1.predict(img_4d)[0] |
|
return {texts[0] + class_names[i]: float(prediction[i]) for i in range(num_classes)} |
|
|
|
|
|
import gradio as gr |
|
image = gr.inputs.Image(shape=(img_height, img_width)) |
|
label = gr.outputs.Label(num_top_classes=num_classes) |
|
details = [ |
|
["NAME: OLUMIDE TOLULOPE SAMUEL,"], |
|
["MATRIC NO: HNDCOM/22/037"], |
|
["CLASS: HND2"], |
|
["LEVEL: 400L"], |
|
["DEPARTMENT: COMPUTER SCIENCE"], |
|
] |
|
|
|
article = """<b>NAME: OLUMIDE TOLULOPE SAMUEL</b> </br> |
|
<b>MATRIC NO: HNDCOM/22/037</b> </br> |
|
<b>CLASS: HND2</b> </br> |
|
<b>LEVEL: 400L</b> </br> |
|
<b>DEPARTMENT: COMPUTER SCIENCE</b> |
|
|
|
`To get samples of images to test this project;` |
|
check for available images here @ |
|
`1. - <a href="https://www.kaggle.com/datasets/kausthubkannan/5-flower-types-classification-dataset">Flower classification images 1</a>` |
|
`2. - <a href="https://public.roboflow.com/classification/flowers">Flower classification images 1</a>` |
|
""" |
|
|
|
|
|
gr.Interface(fn=predict_image, inputs=image, outputs=label, |
|
title="A Flower Classification Project using python ", |
|
description="A flower classification app built using python and deployed using gradio", |
|
article=article, |
|
interpretation='default').launch() |
|
|