Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import tensorflow
|
3 |
+
from tensorflow import keras
|
4 |
+
from keras.models import load_model
|
5 |
+
model1 = load_model("inception.h5")
|
6 |
+
|
7 |
+
img_width, img_height = 180, 180
|
8 |
+
class_names = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']
|
9 |
+
num_classes = len(class_names)
|
10 |
+
|
11 |
+
def predict_image(img):
|
12 |
+
img_4d = img.reshape(-1, img_width, img_height, 3)
|
13 |
+
texts = ["Hey Tolulope, the model predicted: "]
|
14 |
+
prediction = model1.predict(img_4d)[0]
|
15 |
+
return {texts[0] + class_names[i]: float(prediction[i]) for i in range(num_classes)}
|
16 |
+
|
17 |
+
|
18 |
+
import gradio as gr
|
19 |
+
image = gr.inputs.Image(shape=(img_height, img_width))
|
20 |
+
label = gr.outputs.Label(num_top_classes=num_classes)
|
21 |
+
details = [
|
22 |
+
["NAME: OLUMIDE TOLULOPE SAMUEL,"],
|
23 |
+
["MATRIC NO: HNDCOM/22/037"],
|
24 |
+
["CLASS: HND2"],
|
25 |
+
["LEVEL: 400L"],
|
26 |
+
["DEPARTMENT: COMPUTER SCIENCE"],
|
27 |
+
]
|
28 |
+
|
29 |
+
article = """<b>NAME: OLUMIDE TOLULOPE SAMUEL</b> </br>
|
30 |
+
<b>MATRIC NO: HNDCOM/22/037</b> </br>
|
31 |
+
<b>CLASS: HND2</b> </br>
|
32 |
+
<b>LEVEL: 400L</b> </br>
|
33 |
+
<b>DEPARTMENT: COMPUTER SCIENCE</b>
|
34 |
+
|
35 |
+
`To run this program locally, follow these steps;`
|
36 |
+
"""
|
37 |
+
|
38 |
+
|
39 |
+
gr.Interface(fn=predict_image, inputs=image, outputs=label,
|
40 |
+
title="A Flower Classification Project using python ",
|
41 |
+
description="A flower classification app built using python and deployed using gradio",
|
42 |
+
article=article,
|
43 |
+
interpretation='default').launch()
|