import tensorflow from tensorflow import keras from keras.models import load_model model1 = load_model("inception.h5") img_width, img_height = 180, 180 class_names = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips'] num_classes = len(class_names) def predict_image(img): img_4d = img.reshape(-1, img_width, img_height, 3) texts = ["Hey Tolulope, the model predicted: "] prediction = model1.predict(img_4d)[0] return {texts[0] + class_names[i]: float(prediction[i]) for i in range(num_classes)} import gradio as gr image = gr.inputs.Image(shape=(img_height, img_width)) label = gr.outputs.Label(num_top_classes=num_classes) details = [ ["NAME: OLUMIDE TOLULOPE SAMUEL,"], ["MATRIC NO: HNDCOM/22/037"], ["CLASS: HND2"], ["LEVEL: 400L"], ["DEPARTMENT: COMPUTER SCIENCE"], ] article = """NAME: OLUMIDE TOLULOPE SAMUEL
MATRIC NO: HNDCOM/22/037
CLASS: HND2
LEVEL: 400L
DEPARTMENT: COMPUTER SCIENCE `To run this program locally, follow these steps;` """ gr.Interface(fn=predict_image, inputs=image, outputs=label, title="A Flower Classification Project using python ", description="A flower classification app built using python and deployed using gradio", article=article, interpretation='default').launch()