Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -158,8 +158,7 @@ def main():
|
|
158 |
with st.sidebar:
|
159 |
st.image(side_img, width=300)
|
160 |
st.sidebar.subheader("Menu")
|
161 |
-
website_menu = st.sidebar.selectbox("Menu", ("Emotion Recognition", "Project description", "
|
162 |
-
"Leave feedback", "Relax"))
|
163 |
st.set_option('deprecation.showfileUploaderEncoding', False)
|
164 |
|
165 |
if website_menu == "Emotion Recognition":
|
@@ -417,8 +416,7 @@ def main():
|
|
417 |
st.markdown(txt, unsafe_allow_html=True)
|
418 |
|
419 |
st.subheader("Theory")
|
420 |
-
link = '[Theory behind -
|
421 |
-
'(https://talbaram3192.medium.com/classifying-emotions-using-audio-recordings-and-python-434e748a95eb)'
|
422 |
st.markdown(link + ":clap::clap::clap: Tal!", unsafe_allow_html=True)
|
423 |
with st.expander("See Wikipedia definition"):
|
424 |
components.iframe("https://en.wikipedia.org/wiki/Emotion_recognition",
|
@@ -426,13 +424,15 @@ def main():
|
|
426 |
|
427 |
st.subheader("Dataset")
|
428 |
txt = """
|
429 |
-
This web-application is a
|
430 |
|
431 |
Datasets used in this project
|
432 |
* Crowd-sourced Emotional Mutimodal Actors Dataset (**Crema-D**)
|
433 |
* Ryerson Audio-Visual Database of Emotional Speech and Song (**Ravdess**)
|
434 |
* Surrey Audio-Visual Expressed Emotion (**Savee**)
|
435 |
-
* Toronto emotional speech set (**Tess**)
|
|
|
|
|
436 |
"""
|
437 |
st.markdown(txt, unsafe_allow_html=True)
|
438 |
|
@@ -440,52 +440,6 @@ def main():
|
|
440 |
fig = px.violin(df, y="source", x="emotion4", color="actors", box=True, points="all", hover_data=df.columns)
|
441 |
st.plotly_chart(fig, use_container_width=True)
|
442 |
|
443 |
-
st.subheader("FYI")
|
444 |
-
st.write("Since we are currently using a free tier instance of AWS, "
|
445 |
-
"we disabled mel-spec and ensemble models.\n\n"
|
446 |
-
"If you want to try them we recommend to clone our GitHub repo")
|
447 |
-
st.code("git clone https://github.com/CyberMaryVer/speech-emotion-webapp.git", language='bash')
|
448 |
-
|
449 |
-
st.write("After that, just uncomment the relevant sections in the app.py file "
|
450 |
-
"to use these models:")
|
451 |
-
|
452 |
-
elif website_menu == "Our team":
|
453 |
-
st.subheader("Our team")
|
454 |
-
st.balloons()
|
455 |
-
col1, col2 = st.columns([3, 2])
|
456 |
-
with col1:
|
457 |
-
st.info("[email protected]")
|
458 |
-
st.info("[email protected]")
|
459 |
-
st.info("[email protected]")
|
460 |
-
with col2:
|
461 |
-
liimg = Image.open("images/LI-Logo.png")
|
462 |
-
st.image(liimg)
|
463 |
-
st.markdown(f""":speech_balloon: [Maria Startseva](https://www.linkedin.com/in/maria-startseva)""",
|
464 |
-
unsafe_allow_html=True)
|
465 |
-
st.markdown(f""":speech_balloon: [Tal Baram](https://www.linkedin.com/in/tal-baram-b00b66180)""",
|
466 |
-
unsafe_allow_html=True)
|
467 |
-
st.markdown(f""":speech_balloon: [Asher Holder](https://www.linkedin.com/in/asher-holder-526a05173)""",
|
468 |
-
unsafe_allow_html=True)
|
469 |
-
|
470 |
-
elif website_menu == "Leave feedback":
|
471 |
-
st.subheader("Leave feedback")
|
472 |
-
user_input = st.text_area("Your feedback is greatly appreciated")
|
473 |
-
user_name = st.selectbox("Choose your personality", ["checker1", "checker2", "checker3", "checker4"])
|
474 |
-
|
475 |
-
if st.button("Submit"):
|
476 |
-
st.success(f"Message\n\"\"\"{user_input}\"\"\"\nwas sent")
|
477 |
-
|
478 |
-
if user_input == "log123456" and user_name == "checker4":
|
479 |
-
with open("log0.txt", "r", encoding="utf8") as f:
|
480 |
-
st.text(f.read())
|
481 |
-
elif user_input == "feedback123456" and user_name == "checker4":
|
482 |
-
with open("log.txt", "r", encoding="utf8") as f:
|
483 |
-
st.text(f.read())
|
484 |
-
else:
|
485 |
-
log_file(user_name + " " + user_input)
|
486 |
-
thankimg = Image.open("images/sticky.png")
|
487 |
-
st.image(thankimg)
|
488 |
-
|
489 |
else:
|
490 |
import requests
|
491 |
import json
|
|
|
158 |
with st.sidebar:
|
159 |
st.image(side_img, width=300)
|
160 |
st.sidebar.subheader("Menu")
|
161 |
+
website_menu = st.sidebar.selectbox("Menu", ("Emotion Recognition", "Project description", "Relax"))
|
|
|
162 |
st.set_option('deprecation.showfileUploaderEncoding', False)
|
163 |
|
164 |
if website_menu == "Emotion Recognition":
|
|
|
416 |
st.markdown(txt, unsafe_allow_html=True)
|
417 |
|
418 |
st.subheader("Theory")
|
419 |
+
link = '[Theory behind - ]'
|
|
|
420 |
st.markdown(link + ":clap::clap::clap: Tal!", unsafe_allow_html=True)
|
421 |
with st.expander("See Wikipedia definition"):
|
422 |
components.iframe("https://en.wikipedia.org/wiki/Emotion_recognition",
|
|
|
424 |
|
425 |
st.subheader("Dataset")
|
426 |
txt = """
|
427 |
+
This machine learning web-application PROJECT is a partial fulfillment of requirement of Higher National Diploma (HND) computer science **The Federal College of Animal Health and Production Technology** **FCAHPTIB, 2023**.
|
428 |
|
429 |
Datasets used in this project
|
430 |
* Crowd-sourced Emotional Mutimodal Actors Dataset (**Crema-D**)
|
431 |
* Ryerson Audio-Visual Database of Emotional Speech and Song (**Ravdess**)
|
432 |
* Surrey Audio-Visual Expressed Emotion (**Savee**)
|
433 |
+
* Toronto emotional speech set (**Tess**)
|
434 |
+
|
435 |
+
The above datasets was used in the model training of this software before deployment
|
436 |
"""
|
437 |
st.markdown(txt, unsafe_allow_html=True)
|
438 |
|
|
|
440 |
fig = px.violin(df, y="source", x="emotion4", color="actors", box=True, points="all", hover_data=df.columns)
|
441 |
st.plotly_chart(fig, use_container_width=True)
|
442 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
else:
|
444 |
import requests
|
445 |
import json
|