Spaces:
Sleeping
Sleeping
File size: 2,283 Bytes
f8de7c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import gradio as gr
import torch
import torch.nn as nn
import torchvision.transforms as transforms
class AnimeCNN(nn.Module):
def __init__(self, num_classes=4):
super().__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 32, 3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Dropout(0.25),
nn.Conv2d(32, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Dropout(0.25)
)
self.classifier = nn.Sequential(
nn.Linear(64*16*16, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(256, num_classes)
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model = AnimeCNN()
model.load_state_dict(torch.load('model.pth', map_location=device, weights_only=True))
model.eval()
classes = ["usada_pekora", "aisaka_taiga", "megumin", "minato_aqua"]
transform = transforms.Compose([
transforms.Resize((64, 64)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
def predict(image):
image = transform(image).unsqueeze(0)
with torch.no_grad():
outputs = model(image)
probabilities = torch.nn.functional.softmax(outputs[0], dim=0)
confidences = {classes[i]: float(probabilities[i]) for i in range(4)}
return confidences
interface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil", label="入力画像"),
outputs=gr.Label(num_top_classes=4, label="予測結果"),
title="アニメキャラクター分類器",
description="うさだぺこら・逢坂大河・めぐみん・湊あくあの画像を分類します。画像をアップロードしてください。",
examples=[
["examples/usada_pekora.jpg"],
["examples/aisaka_taiga.jpg"],
["examples/megumin.jpg"],
["examples/minato_aqua.jpg"]
],
)
interface.launch(server_name="0.0.0.0", server_port=7860, share=True)
|