File size: 5,421 Bytes
f8de7c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset, SubsetRandomSampler
from sklearn.model_selection import train_test_split

def load_dataset(folder_path, max_images_per_class=60, allowed_classes=None):
    dataset = {}
    
    class_names = [
        name for name in os.listdir(folder_path)
        if os.path.isdir(os.path.join(folder_path, name)) and 
        (allowed_classes is None or name in allowed_classes)
    ]
    
    if allowed_classes:
        class_names = [cls for cls in allowed_classes if cls in class_names]
    
    for class_name in class_names:
        class_path = os.path.join(folder_path, class_name)
        images = []
        
        for file_name in os.listdir(class_path):
            if len(images) >= max_images_per_class:
                break
            if file_name.lower().endswith(('.png', '.jpg', '.jpeg')):
                img_path = os.path.join(class_path, file_name)
                img = Image.open(img_path).convert('RGB')
                images.append(np.array(img))
        
        dataset[class_name] = images
    
    return dataset

class AnimeDataset(Dataset):
    def __init__(self, images, transform=None, classes=None):
        self.images = []
        self.labels = []
        self.transform = transform
        self.classes = classes or list(images.keys())
        
        for label, class_name in enumerate(self.classes):
            class_images = images.get(class_name, [])
            self.images.extend(class_images)
            self.labels.extend([label] * len(class_images))

    def __len__(self):
        return len(self.images)
    
    def __getitem__(self, idx):
        image = Image.fromarray(self.images[idx])
        label = self.labels[idx]
        
        if self.transform:
            image = self.transform(image)
            
        return image, label

class AnimeCNN(nn.Module):
    def __init__(self, num_classes=4):
        super().__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 32, 3, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Dropout(0.25),
            
            nn.Conv2d(32, 64, 3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Dropout(0.25)
        )
        
        self.classifier = nn.Sequential(
            nn.Linear(64*16*16, 256),
            nn.BatchNorm1d(256),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(256, num_classes)
        )

    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x

def main():
    SEED = 42
    CLASSES = ["usada_pekora", "aisaka_taiga", "megumin", "minato_aqua"]
    IMG_SIZE = 64
    BATCH_SIZE = 16 
    NUM_EPOCHS = 15  
    
    torch.manual_seed(SEED)
    np.random.seed(SEED)
    
    dataset = load_dataset("dataset", allowed_classes=CLASSES)
    
    transform = transforms.Compose([
        transforms.Resize((IMG_SIZE, IMG_SIZE)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    
    anime_dataset = AnimeDataset(dataset, transform=transform, classes=CLASSES)
    
    indices = list(range(len(anime_dataset)))
    train_indices, val_indices = train_test_split(
        indices, 
        test_size=0.2,
        random_state=SEED,
        stratify=anime_dataset.labels
    )
    
    train_loader = DataLoader(
        anime_dataset,
        batch_size=BATCH_SIZE,
        sampler=SubsetRandomSampler(train_indices),
        pin_memory=True
    )
    
    val_loader = DataLoader(
        anime_dataset,
        batch_size=40,  
        sampler=SubsetRandomSampler(val_indices),
        pin_memory=True
    )
    
    model = AnimeCNN(num_classes=len(CLASSES))
    
    optimizer = optim.Adam(
        model.parameters(), 
        lr=0.001,
        weight_decay=1e-4
    )
    
    criterion = nn.CrossEntropyLoss()
    
    for epoch in range(NUM_EPOCHS):
        model.train()
        train_loss = 0.0
        
        for inputs, labels in train_loader:
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            train_loss += loss.item()
        
        model.eval()
        val_loss = 0.0
        correct = 0
        total = 0
        
        with torch.no_grad():
            for inputs, labels in val_loader:
                outputs = model(inputs)
                loss = criterion(outputs, labels)
                val_loss += loss.item()
                
                _, predicted = torch.max(outputs, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
        
        train_loss /= len(train_loader)
        val_loss /= len(val_loader)
        val_acc = 100 * correct / total
        
        print(f"Epoch {epoch+1:02d} | "
              f"Train Loss: {train_loss:.4f} | "
              f"Val Loss: {val_loss:.4f} | "
              f"Accuracy: {val_acc:.2f}%")

    print("Model saved as model.pth")
    torch.save(model.state_dict(), "model.pth")

if __name__ == "__main__":
    main()