Spaces:
Sleeping
Sleeping
File size: 5,421 Bytes
f8de7c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import os
import numpy as np
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset, SubsetRandomSampler
from sklearn.model_selection import train_test_split
def load_dataset(folder_path, max_images_per_class=60, allowed_classes=None):
dataset = {}
class_names = [
name for name in os.listdir(folder_path)
if os.path.isdir(os.path.join(folder_path, name)) and
(allowed_classes is None or name in allowed_classes)
]
if allowed_classes:
class_names = [cls for cls in allowed_classes if cls in class_names]
for class_name in class_names:
class_path = os.path.join(folder_path, class_name)
images = []
for file_name in os.listdir(class_path):
if len(images) >= max_images_per_class:
break
if file_name.lower().endswith(('.png', '.jpg', '.jpeg')):
img_path = os.path.join(class_path, file_name)
img = Image.open(img_path).convert('RGB')
images.append(np.array(img))
dataset[class_name] = images
return dataset
class AnimeDataset(Dataset):
def __init__(self, images, transform=None, classes=None):
self.images = []
self.labels = []
self.transform = transform
self.classes = classes or list(images.keys())
for label, class_name in enumerate(self.classes):
class_images = images.get(class_name, [])
self.images.extend(class_images)
self.labels.extend([label] * len(class_images))
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = Image.fromarray(self.images[idx])
label = self.labels[idx]
if self.transform:
image = self.transform(image)
return image, label
class AnimeCNN(nn.Module):
def __init__(self, num_classes=4):
super().__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 32, 3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Dropout(0.25),
nn.Conv2d(32, 64, 3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, 2),
nn.Dropout(0.25)
)
self.classifier = nn.Sequential(
nn.Linear(64*16*16, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(256, num_classes)
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def main():
SEED = 42
CLASSES = ["usada_pekora", "aisaka_taiga", "megumin", "minato_aqua"]
IMG_SIZE = 64
BATCH_SIZE = 16
NUM_EPOCHS = 15
torch.manual_seed(SEED)
np.random.seed(SEED)
dataset = load_dataset("dataset", allowed_classes=CLASSES)
transform = transforms.Compose([
transforms.Resize((IMG_SIZE, IMG_SIZE)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
anime_dataset = AnimeDataset(dataset, transform=transform, classes=CLASSES)
indices = list(range(len(anime_dataset)))
train_indices, val_indices = train_test_split(
indices,
test_size=0.2,
random_state=SEED,
stratify=anime_dataset.labels
)
train_loader = DataLoader(
anime_dataset,
batch_size=BATCH_SIZE,
sampler=SubsetRandomSampler(train_indices),
pin_memory=True
)
val_loader = DataLoader(
anime_dataset,
batch_size=40,
sampler=SubsetRandomSampler(val_indices),
pin_memory=True
)
model = AnimeCNN(num_classes=len(CLASSES))
optimizer = optim.Adam(
model.parameters(),
lr=0.001,
weight_decay=1e-4
)
criterion = nn.CrossEntropyLoss()
for epoch in range(NUM_EPOCHS):
model.train()
train_loss = 0.0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
model.eval()
val_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in val_loader:
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
train_loss /= len(train_loader)
val_loss /= len(val_loader)
val_acc = 100 * correct / total
print(f"Epoch {epoch+1:02d} | "
f"Train Loss: {train_loss:.4f} | "
f"Val Loss: {val_loss:.4f} | "
f"Accuracy: {val_acc:.2f}%")
print("Model saved as model.pth")
torch.save(model.state_dict(), "model.pth")
if __name__ == "__main__":
main()
|