import os import numpy as np from PIL import Image import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data import DataLoader, Dataset, SubsetRandomSampler from sklearn.model_selection import train_test_split def load_dataset(folder_path, max_images_per_class=60, allowed_classes=None): dataset = {} class_names = [ name for name in os.listdir(folder_path) if os.path.isdir(os.path.join(folder_path, name)) and (allowed_classes is None or name in allowed_classes) ] if allowed_classes: class_names = [cls for cls in allowed_classes if cls in class_names] for class_name in class_names: class_path = os.path.join(folder_path, class_name) images = [] for file_name in os.listdir(class_path): if len(images) >= max_images_per_class: break if file_name.lower().endswith(('.png', '.jpg', '.jpeg')): img_path = os.path.join(class_path, file_name) img = Image.open(img_path).convert('RGB') images.append(np.array(img)) dataset[class_name] = images return dataset class AnimeDataset(Dataset): def __init__(self, images, transform=None, classes=None): self.images = [] self.labels = [] self.transform = transform self.classes = classes or list(images.keys()) for label, class_name in enumerate(self.classes): class_images = images.get(class_name, []) self.images.extend(class_images) self.labels.extend([label] * len(class_images)) def __len__(self): return len(self.images) def __getitem__(self, idx): image = Image.fromarray(self.images[idx]) label = self.labels[idx] if self.transform: image = self.transform(image) return image, label class AnimeCNN(nn.Module): def __init__(self, num_classes=4): super().__init__() self.features = nn.Sequential( nn.Conv2d(3, 32, 3, padding=1), nn.BatchNorm2d(32), nn.ReLU(), nn.MaxPool2d(2, 2), nn.Dropout(0.25), nn.Conv2d(32, 64, 3, padding=1), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2, 2), nn.Dropout(0.25) ) self.classifier = nn.Sequential( nn.Linear(64*16*16, 256), nn.BatchNorm1d(256), nn.ReLU(), nn.Dropout(0.5), nn.Linear(256, num_classes) ) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def main(): SEED = 42 CLASSES = ["usada_pekora", "aisaka_taiga", "megumin", "minato_aqua"] IMG_SIZE = 64 BATCH_SIZE = 16 NUM_EPOCHS = 15 torch.manual_seed(SEED) np.random.seed(SEED) dataset = load_dataset("dataset", allowed_classes=CLASSES) transform = transforms.Compose([ transforms.Resize((IMG_SIZE, IMG_SIZE)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) anime_dataset = AnimeDataset(dataset, transform=transform, classes=CLASSES) indices = list(range(len(anime_dataset))) train_indices, val_indices = train_test_split( indices, test_size=0.2, random_state=SEED, stratify=anime_dataset.labels ) train_loader = DataLoader( anime_dataset, batch_size=BATCH_SIZE, sampler=SubsetRandomSampler(train_indices), pin_memory=True ) val_loader = DataLoader( anime_dataset, batch_size=40, sampler=SubsetRandomSampler(val_indices), pin_memory=True ) model = AnimeCNN(num_classes=len(CLASSES)) optimizer = optim.Adam( model.parameters(), lr=0.001, weight_decay=1e-4 ) criterion = nn.CrossEntropyLoss() for epoch in range(NUM_EPOCHS): model.train() train_loss = 0.0 for inputs, labels in train_loader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() model.eval() val_loss = 0.0 correct = 0 total = 0 with torch.no_grad(): for inputs, labels in val_loader: outputs = model(inputs) loss = criterion(outputs, labels) val_loss += loss.item() _, predicted = torch.max(outputs, 1) total += labels.size(0) correct += (predicted == labels).sum().item() train_loss /= len(train_loader) val_loss /= len(val_loader) val_acc = 100 * correct / total print(f"Epoch {epoch+1:02d} | " f"Train Loss: {train_loss:.4f} | " f"Val Loss: {val_loss:.4f} | " f"Accuracy: {val_acc:.2f}%") print("Model saved as model.pth") torch.save(model.state_dict(), "model.pth") if __name__ == "__main__": main()