Spaces:
Runtime error
Runtime error
File size: 4,209 Bytes
686ef17 29b5c32 686ef17 6c2ef8d 686ef17 6c2ef8d 686ef17 6c2ef8d 686ef17 6c2ef8d 686ef17 6c2ef8d 686ef17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
ckpt = "misdelivery/Llama-3.2-11B-Vision-Instruct-ja-test1"
model = MllamaForConditionalGeneration.from_pretrained(ckpt,
torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)
@spaces.GPU
def bot_streaming(message, history, max_new_tokens=250):
txt = message["text"]
ext_buffer = f"{txt}"
messages= []
images = []
for i, msg in enumerate(history):
if isinstance(msg[0], tuple):
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
images.append(Image.open(msg[0][0]).convert("RGB"))
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
# messages are already handled
pass
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str): # text only turn
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
# add current message
if len(message["files"]) == 1:
if isinstance(message["files"][0], str): # examples
image = Image.open(message["files"][0]).convert("RGB")
else: # regular input
image = Image.open(message["files"][0]["path"]).convert("RGB")
images.append(image)
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
if images == []:
inputs = processor(text=texts, return_tensors="pt").to("cuda")
else:
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer
time.sleep(0.01)
yield buffer
demo = gr.ChatInterface(fn=bot_streaming, title="Multimodal Llama", examples=[
[{"text": "ใใฎไฝๅใฏใฉใฎๆไปฃใซๅฑใใฆใใพใใ๏ผใใฎๆไปฃใซใคใใฆ่ฉณใใๆใใฆใใ ใใใ", "files":["./examples/rococo.jpg"]},
200],
[{"text": "ใใฎๅณใซใใใจใๅนฒใฐใคใฏใฉใใง็บ็ใใพใใ๏ผ", "files":["./examples/weather_events.png"]},
250],
[{"text": "ใใฎ้ใใ็ฝใ็ซใๅคใใจใฉใใชใใพใใ๏ผ", "files":["./examples/ai2d_test.jpg"]},
250],
[{"text": "่ซๆฑๆฅใใๆๆฅใพใงใฎๆ้ใฏ๏ผ็ญใ็ฐกๆฝใซ็ญใใฆใใ ใใใ", "files":["./examples/invoice.png"]},
250],
[{"text": "ใใฎใขใใฅใกใณใใฏใฉใใซใใใพใใ๏ผๅจ่พบๅฐๅใฎใใใใใๆใใฆใใใ ใใพใใ", "files":["./examples/wat_arun.jpg"]},
250],
],
textbox=gr.MultimodalTextbox(),
additional_inputs = [gr.Slider(
minimum=10,
maximum=500,
value=250,
step=10,
label="Maximum number of new tokens to generate",
)
],
cache_examples=False,
description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it, or simply try one of the examples below. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32). ",
stop_btn="Stop Generation",
fill_height=True,
multimodal=True)
demo.launch(debug=True) |