File size: 3,374 Bytes
19b30e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from dotenv import load_dotenv
load_dotenv()

import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader,DirectoryLoader
from langchain.chains.summarize import load_summarize_chain
from transformers import pipeline
import torch
import base64


# Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("MBZUAI/LaMini-Flan-T5-248M")
base_model = AutoModelForSeq2SeqLM.from_pretrained("MBZUAI/LaMini-Flan-T5-248M")

#file loader and processing 
def file_preprocessing(file):
    loader = PyPDFLoader(file)
    pages = loader.load_and_split()
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
    texts = text_splitter.split_documents(pages)
    final_texts = ""
    for text in texts:
        print(text)
        final_texts = final_texts + text.page_content
    return final_texts

#lm pipeline
def llm_pipleline(filepath):
    pipe_sum = pipeline(
        'summarization',
        model = base_model,
        tokenizer = tokenizer,
        max_length = 500,
        min_length = 50      
    )
    input_text = file_preprocessing(filepath)
    result = pipe_sum(input_text)
    result = result[0]['summary_text']
    return result
def llm_pipleline1(ans):
    pipe_sum = pipeline(
        'summarization',
        model = base_model,
        tokenizer = tokenizer,
        max_length = 500,
        min_length = 50      
    )
    input_text =""+ ans
    result = pipe_sum(input_text)
    result = result[0]['summary_text']
    return result

@st.cache_data
#function to display the pdf file 
def displayPDF(file):
    #opening file from file path
    with open(file, "rb") as f:
        base_pdf = base64.bb64encode(f.read()).decode('utf-8') 

#embedding pdf in html
pdf_display = F'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'

#displaying file
st.markdown(pdf_display, unsafe_allow_html=True)

#streamlit code
st.set_page_config(layout='wide')

def main():
    
    st.title('Content sumerizer')
    
    uploaded_file = st.file_uploader("upload your pdf file", type=['pdf'])
    
    if uploaded_file is not None:
        if st.button("summarize"):
            col1,col2 = st.columns(2)
            filepath = "home/user/app"+uploaded_file.name
            with open(filepath, 'wb') as temp_file:
                temp_file.write(uploaded_file.read())
            with col1:
                st.info("uploaded PDF File")
                pdf_viewer = displayPDF(filepath)
                
                    
            with col2:
                st.info("Summarization is below")
                summary = llm_pipleline(filepath)
                st.success(summary)
    else :
        print("enter a valid pdf file")

    if st.button("text"):
        ans = input("enter your content")
        if st.button("Enter"):
            col1,col2 = st.columns(2)

            with col1:
                st.info("what you have entered")
                print(ans)                   
            with col2:
                st.info("Summarization is below")
                summary1=llm_pipleline1(ans)
                st.success(summary1)



                    
            
if __name__ == '__main__':
    main()