File size: 2,977 Bytes
f2c8e06
cadce87
 
f2c8e06
 
cadce87
f2c8e06
 
 
cadce87
f2c8e06
 
 
cadce87
 
 
 
 
 
 
 
 
 
 
 
 
432a8d9
 
cadce87
 
 
 
432a8d9
 
cadce87
f2c8e06
 
cadce87
 
432a8d9
cadce87
 
 
 
f2c8e06
9dca518
cadce87
f2c8e06
432a8d9
f2c8e06
cadce87
f2c8e06
 
cadce87
f2c8e06
 
cadce87
 
f2c8e06
cadce87
f2c8e06
 
 
cadce87
f2c8e06
 
cadce87
 
 
 
 
 
 
 
 
 
 
 
432a8d9
 
cadce87
 
432a8d9
cadce87
 
 
 
 
 
f2c8e06
 
cadce87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import base64
import tempfile
import streamlit as st
from transformers import pipeline
from PyPDF2 import PdfReader

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

# Load the summarization model
tokenizer = AutoTokenizer.from_pretrained("MBZUAI/LaMini-Flan-T5-248M")
base_model = AutoModelForSeq2SeqLM.from_pretrained("MBZUAI/LaMini-Flan-T5-248M")

# Function to extract text from a PDF using PyPDF2
def extract_text_from_pdf(pdf_path):
      reader = PdfReader(pdf_path)
      text = ""
      for page in reader.pages:
          text += page.extract_text()  # Extract text from each page
      if not text.strip():
          raise ValueError("The PDF file contains no extractable text.")
      return text


# LLM pipeline for summarization
def llm_pipeline(input_text):
    pipe_sum = pipeline(
        'summarization',
        model=base_model,
        tokenizer=tokenizer,
        max_length=500,
        min_length=50,
    )
    result = pipe_sum(input_text)
    return result[0]['summary_text']

@st.cache_data
# Function to display the PDF
def displayPDF(file_path):
    
      with open(file_path, "rb") as f:
          base64_pdf = base64.b64encode(f.read()).decode('utf-8')
      pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
      st.markdown(pdf_display, unsafe_allow_html=True)


# Streamlit App
def main():
    st.title('Content Summarizer')

    # PDF Upload Section
    uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf'])
    if uploaded_file is not None:
        if st.button("Summarize PDF"):
            col1, col2 = st.columns(2)

            # Save the uploaded file to a temporary location
            with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf", dir="/tmp/") as temp_file:
                temp_file.write(uploaded_file.read())
                temp_filepath = temp_file.name

            with col1:
                st.info("Uploaded PDF File")
                displayPDF(temp_filepath)

            with col2:
                st.info("Summarization")
                input_text = extract_text_from_pdf(temp_filepath)
                if input_text:  # Proceed only if text extraction was successful
                    summary = llm_pipeline(input_text)
                    st.success(summary)

    # Text Input Section
    st.header("Summarize Your Text")
    user_input = st.text_area("Enter your content here:", height=200)
    if st.button("Summarize Text"):
        if user_input.strip():
            col1, col2 = st.columns(2)

            with col1:
                st.info("Original Content")
                st.write(user_input)

            with col2:
                st.info("Summarization")
                summary = llm_pipeline(user_input)
                st.success(summary)
        else:
            st.warning("Please enter some content to summarize.")

if __name__ == '__main__':
    main()