Team_skulk / app.py
mishrasahil934's picture
Create app.py
f225694 verified
raw
history blame
3.63 kB
from dotenv import load_dotenv
load_dotenv()
from tempfile import NamedTemporaryFile
import os
import streamlit as st
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import PyPDFLoader,DirectoryLoader
from langchain.chains.summarize import load_summarize_chain
from transformers import pipeline
import torch
import base64
# Load model directly
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("MBZUAI/LaMini-Flan-T5-248M")
base_model = AutoModelForSeq2SeqLM.from_pretrained("MBZUAI/LaMini-Flan-T5-248M")
#file loader and processing
def file_preprocessing(file):
loader = PyPDFLoader(file)
pages = loader.load_and_split()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
texts = text_splitter.split_documents(pages)
final_texts = ""
for text in texts:
print(text)
final_texts = final_texts + text.page_content
return final_texts
#lm pipeline
def llm_pipleline(filepath):
pipe_sum = pipeline(
'summarization',
model = base_model,
tokenizer = tokenizer,
max_length = 500,
min_length = 50
)
input_text = file_preprocessing(filepath)
result = pipe_sum(input_text)
result = result[0]['summary_text']
return result
def llm_pipleline1(ans):
pipe_sum = pipeline(
'summarization',
model = base_model,
tokenizer = tokenizer,
max_length = 500,
min_length = 50
)
input_text =""+ ans
result = pipe_sum(input_text)
result = result[0]['summary_text']
return result
@st.cache_data
# Function to display the PDF file
def displayPDF(file):
# Opening file from file path
with open(file, "rb") as f:
base_pdf = base64.b64encode(f.read()).decode('utf-8') # Corrected function name and variable
# Embedding PDF in HTML
pdf_display = f'<iframe src="data:application/pdf;base64,{base_pdf}" width="100%" height="600" type="application/pdf"></iframe>'
# Displaying the file
st.markdown(pdf_display, unsafe_allow_html=True)
#streamlit code
st.set_page_config(layout='wide')
def main():
st.title('Content Summarizer')
uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf'])
if uploaded_file is not None:
if st.button("Summarize"):
col1, col2 = st.columns(2)
# Save the uploaded file to a temporary location
with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
temp_file.write(uploaded_file.read())
temp_filepath = temp_file.name
with col1:
st.info("Uploaded PDF File")
pdf_viewer = displayPDF(temp_filepath)
with col2:
st.info("Summarization is below")
summary = llm_pipleline(temp_filepath)
st.success(summary)
# New Section for Text Input Summarization
st.header("Summarize Your Text")
user_input = st.text_area("Enter your content here:", height=200)
if st.button("Summarize Text"):
if user_input.strip():
col1, col2 = st.columns(2)
with col1:
st.info("Original Content")
st.write(user_input)
with col2:
st.info("Summarization is below")
summary = llm_pipleline1(user_input)
st.success(summary)
else:
st.warning("Please enter some content to summarize.")
if __name__ == '__main__':
main()