from dotenv import load_dotenv load_dotenv() from tempfile import NamedTemporaryFile import os import streamlit as st from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import PyPDFLoader,DirectoryLoader from langchain.chains.summarize import load_summarize_chain from transformers import pipeline import torch import base64 # Load model directly from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("MBZUAI/LaMini-Flan-T5-248M") base_model = AutoModelForSeq2SeqLM.from_pretrained("MBZUAI/LaMini-Flan-T5-248M") #file loader and processing def file_preprocessing(file): loader = PyPDFLoader(file) pages = loader.load_and_split() text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50) texts = text_splitter.split_documents(pages) final_texts = "" for text in texts: print(text) final_texts = final_texts + text.page_content return final_texts #lm pipeline def llm_pipleline(filepath): pipe_sum = pipeline( 'summarization', model = base_model, tokenizer = tokenizer, max_length = 500, min_length = 50 ) input_text = file_preprocessing(filepath) result = pipe_sum(input_text) result = result[0]['summary_text'] return result def llm_pipleline1(ans): pipe_sum = pipeline( 'summarization', model = base_model, tokenizer = tokenizer, max_length = 500, min_length = 50 ) input_text =""+ ans result = pipe_sum(input_text) result = result[0]['summary_text'] return result @st.cache_data # Function to display the PDF file def displayPDF(file): # Opening file from file path with open(file, "rb") as f: base_pdf = base64.b64encode(f.read()).decode('utf-8') # Corrected function name and variable # Embedding PDF in HTML pdf_display = f'' # Displaying the file st.markdown(pdf_display, unsafe_allow_html=True) #streamlit code st.set_page_config(layout='wide') def main(): st.title('Content Summarizer') uploaded_file = st.file_uploader("Upload your PDF file", type=['pdf']) if uploaded_file is not None: if st.button("Summarize"): col1, col2 = st.columns(2) # Save the uploaded file to a temporary location with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file: temp_file.write(uploaded_file.read()) temp_filepath = temp_file.name with col1: st.info("Uploaded PDF File") pdf_viewer = displayPDF(temp_filepath) with col2: st.info("Summarization is below") summary = llm_pipleline(temp_filepath) st.success(summary) # New Section for Text Input Summarization st.header("Summarize Your Text") user_input = st.text_area("Enter your content here:", height=200) if st.button("Summarize Text"): if user_input.strip(): col1, col2 = st.columns(2) with col1: st.info("Original Content") st.write(user_input) with col2: st.info("Summarization is below") summary = llm_pipleline1(user_input) st.success(summary) else: st.warning("Please enter some content to summarize.") if __name__ == '__main__': main()