Spaces:
Sleeping
Sleeping
import numpy as np | |
import joblib | |
from tensorflow.keras.models import load_model | |
import gradio as gr | |
# Load the saved scaler and model | |
scaler = joblib.load('scaler.joblib') | |
model = load_model('rainfall_prediction_model.h5') | |
def predict_rainfall(Dew_Point, Pressure, Gust_Speed, RH, Wind_Direction, | |
Wind_Speed, Temperature, Rained, Water_Content, Solar_Radiation): | |
# Preprocess the input data | |
input_data = np.array([[Dew_Point, Pressure, Gust_Speed, RH, Wind_Direction, | |
Wind_Speed, Temperature, Rained, Water_Content, Solar_Radiation]]) | |
input_data_scaled = scaler.transform(input_data) | |
input_data_scaled = input_data_scaled.reshape((input_data_scaled.shape[0], 1, input_data_scaled.shape[1])) | |
# Make a prediction | |
prediction = model.predict(input_data_scaled) | |
# Output the prediction | |
return 'Rain' if prediction[0][0] > 0 else 'No Rain' | |
# Gradio Interface | |
inputs = [ | |
gr.Number(label="Dew Point"), | |
gr.Number(label="Pressure"), | |
gr.Number(label="Gust Speed"), | |
gr.Number(label="Relative Humidity"), | |
gr.Number(label="Wind Direction"), | |
gr.Number(label="Wind Speed"), | |
gr.Number(label="Temperature"), | |
gr.Number(label="Rained"), | |
gr.Number(label="Water Content"), | |
gr.Number(label="Solar Radiation") | |
] | |
output = gr.Textbox(label="Prediction") | |
gr.Interface(fn=predict_rainfall, inputs=inputs, outputs=output, title="Rainfall Prediction").launch() | |