File size: 4,913 Bytes
bb80bdc
 
 
 
59137fe
bb80bdc
 
 
 
6a782d0
 
bb80bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59137fe
bb80bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26547ea
bb80bdc
 
8ff0005
bb80bdc
 
 
59137fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb80bdc
 
 
 
 
 
 
 
59137fe
bb80bdc
8ff0005
bb80bdc
 
 
 
59137fe
 
 
 
 
 
 
bb80bdc
59137fe
 
 
 
 
 
 
 
 
1b108a9
 
 
 
bb80bdc
59137fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import gradio as gr
import numpy as np
import pandas as pd
import yfinance as yf
from datetime import datetime, timedelta
from tensorflow.keras.models import load_model
from joblib import load

# Load the saved LSTM model and scaler
lstm_model = load_model('lstm_model.h5')
scaler = load('scaler.joblib')

# Define the list of stocks
stock_list = ['GOOG', 'AAPL', 'TSLA', 'AMZN', 'MSFT']

# Function to get the last row of stock data
def get_last_stock_data(ticker):
    try:
        start_date = '2010-01-01'
        end_date = datetime.now().strftime('%Y-%m-%d')
        data = yf.download(ticker, start=start_date, end=end_date)
        last_row = data.iloc[-1]
        return last_row.to_dict()
    except Exception as e:
        return str(e)

# Function to make predictions
def predict_stock_price(ticker, open_price, close_price):
    try:
        start_date = '2010-01-01'
        end_date = datetime.now().strftime('%Y-%m-%d')
        data = yf.download(ticker, start=start_date, end=end_date)

        # Prepare the data
        data = data[['Close']]
        dataset = data.values
        scaled_data = scaler.transform(dataset)

        # Append the user inputs as the last row in the data
        user_input = np.array([[close_price]])
        user_input_scaled = scaler.transform(user_input)
        scaled_data = np.vstack([scaled_data, user_input_scaled])

        # Prepare the data for LSTM
        x_test_lstm = []
        for i in range(60, len(scaled_data)):
            x_test_lstm.append(scaled_data[i-60:i])

        x_test_lstm = np.array(x_test_lstm)
        x_test_lstm = np.reshape(x_test_lstm, (x_test_lstm.shape[0], x_test_lstm.shape[1], 1))

        # LSTM Predictions
        lstm_predictions = lstm_model.predict(x_test_lstm)
        lstm_predictions = scaler.inverse_transform(lstm_predictions)
        next_day_lstm_price = lstm_predictions[-1][0]
        
        result = f"Predicted future price for {ticker}: ${next_day_lstm_price:.2f}"

        return result
    except Exception as e:
        return str(e)

# Function to predict next month's price
def predict_next_month_price(ticker):
    try:
        start_date = '2010-01-01'
        end_date = datetime.now().strftime('%Y-%m-%d')
        data = yf.download(ticker, start=start_date, end=end_date)

        # Prepare the data
        data = data[['Close']]
        dataset = data.values
        scaled_data = scaler.transform(dataset)

        # Prepare the data for LSTM
        x_test_lstm = []
        for i in range(60, len(scaled_data)):
            x_test_lstm.append(scaled_data[i-60:i])

        x_test_lstm = np.array(x_test_lstm)
        x_test_lstm = np.reshape(x_test_lstm, (x_test_lstm.shape[0], x_test_lstm.shape[1], 1))

        # Predicting the next 30 days
        predictions = []
        for _ in range(30):
            pred = lstm_model.predict(x_test_lstm[-1].reshape(1, 60, 1))
            predictions.append(pred)
            x_test_lstm = np.append(x_test_lstm, pred.reshape(1, 1, 1), axis=1)
            x_test_lstm = x_test_lstm[:, 1:, :]

        predictions = np.array(predictions).reshape(-1, 1)
        next_month_predictions = scaler.inverse_transform(predictions)
        next_month_price = next_month_predictions[-1][0]

        result = f"Predicted price for {ticker} next month: ${next_month_price:.2f}"

        return result
    except Exception as e:
        return str(e)

# Function to display historical data
def display_historical_data(ticker):
    try:
        start_date = '2010-01-01'
        end_date = datetime.now().strftime('%Y-%m-%d')
        data = yf.download(ticker, start=start_date, end=end_date)
        return data.tail(30)
    except Exception as e:
        return str(e)

# Set up Gradio interface
ticker_input = gr.Dropdown(choices=stock_list, label="Stock Ticker")

iface = gr.Interface(
    fn=predict_stock_price,
    inputs=[
        ticker_input,
        gr.Number(label="Open"),
        gr.Number(label="Close")
    ],
    outputs=gr.Textbox(),
    title="Stock Price Predictor",
    description="Select the stock ticker and input the last recorded values to predict the closing price using the LSTM model."
)

next_month_iface = gr.Interface(
    fn=predict_next_month_price,
    inputs=[ticker_input],
    outputs=gr.Textbox(),
    title="Next Month Stock Price Predictor",
    description="Select the stock ticker to predict the closing price for the next month using the LSTM model."
)

historical_data_iface = gr.Interface(
    fn=display_historical_data,
    inputs=[ticker_input],
    outputs=gr.Dataframe(),
    title="Historical Data Viewer",
    description="Select the stock ticker to view the historical data."
)

# Combine interfaces
app = gr.TabbedInterface(
    interface_list=[iface, next_month_iface, historical_data_iface],
    tab_names=["Predict Today's Price", "Predict Next Month's Price", "View Historical Data"]
)

app.launch()