Spaces:
Sleeping
Sleeping
File size: 5,262 Bytes
ae131a8 6db8df3 ae131a8 6db8df3 ae131a8 6db8df3 ae131a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import streamlit as st
import numpy as np
import pandas as pd
import yfinance as yf
from datetime import datetime
from tensorflow.keras.models import load_model
from joblib import load
# Load the saved LSTM model and scaler
lstm_model = load_model('lstm_model.h5')
scaler = load('scaler.joblib')
# Define the list of stocks
stock_list = ['GOOG', 'AAPL', 'TSLA', 'AMZN', 'MSFT']
# Function to get the last row of stock data
def get_last_stock_data(ticker):
try:
start_date = '2010-01-01'
end_date = datetime.now().strftime('%Y-%m-%d')
data = yf.download(ticker, start=start_date, end=end_date)
last_row = data.iloc[-1]
return last_row.to_dict()
except Exception as e:
return str(e)
# Function to make predictions
def predict_stock_price(ticker, open_price, close_price):
try:
start_date = '2010-01-01'
end_date = datetime.now().strftime('%Y-%m-%d')
data = yf.download(ticker, start=start_date, end=end_date)
# Prepare the data
data = data[['Close']]
dataset = data.values
scaled_data = scaler.transform(dataset)
# Append the user inputs as the last row in the data
user_input = np.array([[close_price]])
user_input_scaled = scaler.transform(user_input)
scaled_data = np.vstack([scaled_data, user_input_scaled])
# Prepare the data for LSTM
x_test_lstm = []
for i in range(60, len(scaled_data)):
x_test_lstm.append(scaled_data[i-60:i])
x_test_lstm = np.array(x_test_lstm)
x_test_lstm = np.reshape(x_test_lstm, (x_test_lstm.shape[0], x_test_lstm.shape[1], 1))
# LSTM Predictions
lstm_predictions = lstm_model.predict(x_test_lstm)
lstm_predictions = scaler.inverse_transform(lstm_predictions)
next_day_lstm_price = lstm_predictions[-1][0]
result = f"Predicted future price for {ticker}: ${next_day_lstm_price:.2f}"
return result
except Exception as e:
return str(e)
# Function to predict next month's price
def predict_next_month_price(ticker, close_price):
try:
start_date = '2010-01-01'
end_date = datetime.now().strftime('%Y-%m-%d')
data = yf.download(ticker, start=start_date, end=end_date)
# Prepare the data
data = data[['Close']]
dataset = data.values
scaled_data = scaler.transform(dataset)
# Append the user inputs as the last row in the data
user_input = np.array([[close_price]])
user_input_scaled = scaler.transform(user_input)
scaled_data = np.vstack([scaled_data, user_input_scaled])
# Prepare the data for LSTM
x_test_lstm = []
for i in range(60, len(scaled_data)):
x_test_lstm.append(scaled_data[i-60:i])
x_test_lstm = np.array(x_test_lstm)
x_test_lstm = np.reshape(x_test_lstm, (x_test_lstm.shape[0], x_test_lstm.shape[1], 1))
# Predicting the next 30 days
predictions = []
for _ in range(30):
pred = lstm_model.predict(x_test_lstm[-1].reshape(1, 60, 1))
predictions.append(pred[0])
new_input = np.append(x_test_lstm[-1][1:], pred)
x_test_lstm = np.append(x_test_lstm, new_input.reshape(1, 60, 1), axis=0)
predictions = np.array(predictions)
next_month_predictions = scaler.inverse_transform(predictions)
next_month_price = next_month_predictions[-1][0]
result = f"Predicted price for {ticker} next month: ${next_month_price:.2f}"
return result
except Exception as e:
return str(e)
# Function to display historical data
def display_historical_data(ticker):
try:
start_date = '2010-01-01'
end_date = datetime.now().strftime('%Y-%m-%d')
data = yf.download(ticker, start=start_date, end=end_date)
return data.tail(30)
except Exception as e:
return str(e)
# Streamlit interface
st.title("Stock Price Predictor")
tab1, tab2, tab3 = st.tabs(["Predict Today's Price", "Predict Next Month's Price", "View Historical Data"])
with tab1:
st.header("Predict Today's Price")
ticker_input = st.selectbox("Stock Ticker", stock_list, key="today_ticker")
open_price = st.number_input("Open Price", value=0.0, key="today_open_price")
close_price = st.number_input("Close Price", value=0.0, key="today_close_price")
if st.button("Predict Today's Price"):
result = predict_stock_price(ticker_input, open_price, close_price)
st.write(result)
with tab2:
st.header("Predict Next Month's Price")
next_month_ticker_input = st.selectbox("Stock Ticker", stock_list, key="next_month_ticker")
next_month_close_price = st.number_input("Close Price", value=0.0, key="next_month_close_price")
if st.button("Predict Next Month's Price"):
result = predict_next_month_price(next_month_ticker_input, next_month_close_price)
st.write(result)
with tab3:
st.header("View Historical Data")
historical_ticker_input = st.selectbox("Stock Ticker", stock_list, key="historical_ticker")
if st.button("View Data"):
data = display_historical_data(historical_ticker_input)
st.dataframe(data)
|