File size: 6,453 Bytes
ae131a8
 
 
 
 
 
 
 
 
 
 
 
4ebb53d
 
 
 
 
 
 
 
ae131a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ebb53d
ae131a8
 
 
 
4708b6f
ae131a8
4ebb53d
 
 
 
 
 
 
 
f6a2537
 
 
 
 
 
 
 
4ebb53d
6d1de8e
ae131a8
 
6d1de8e
4ebb53d
6db8df3
 
ae131a8
4ebb53d
 
ae131a8
 
 
6d1de8e
4ebb53d
6db8df3
ae131a8
4ebb53d
 
ae131a8
 
 
6d1de8e
4ebb53d
ae131a8
4ebb53d
 
ae131a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import streamlit as st
import numpy as np
import pandas as pd
import yfinance as yf
from datetime import datetime
from tensorflow.keras.models import load_model
from joblib import load

# Load the saved LSTM model and scaler
lstm_model = load_model('lstm_model.h5')
scaler = load('scaler.joblib')

# Dictionary of stock tickers and their full names
stock_dict = {
    'GOOG': 'Alphabet Inc.',
    'AAPL': 'Apple Inc.',
    'TSLA': 'Tesla, Inc.',
    'AMZN': 'Amazon.com, Inc.',
    'MSFT': 'Microsoft Corporation'
}

# Function to get the last row of stock data
def get_last_stock_data(ticker):
    try:
        start_date = '2010-01-01'
        end_date = datetime.now().strftime('%Y-%m-%d')
        data = yf.download(ticker, start=start_date, end=end_date)
        last_row = data.iloc[-1]
        return last_row.to_dict()
    except Exception as e:
        return str(e)

# Function to make predictions
def predict_stock_price(ticker, open_price, close_price):
    try:
        start_date = '2010-01-01'
        end_date = datetime.now().strftime('%Y-%m-%d')
        data = yf.download(ticker, start=start_date, end=end_date)

        # Prepare the data
        data = data[['Close']]
        dataset = data.values
        scaled_data = scaler.transform(dataset)

        # Append the user inputs as the last row in the data
        user_input = np.array([[close_price]])
        user_input_scaled = scaler.transform(user_input)
        scaled_data = np.vstack([scaled_data, user_input_scaled])

        # Prepare the data for LSTM
        x_test_lstm = []
        for i in range(60, len(scaled_data)):
            x_test_lstm.append(scaled_data[i-60:i])

        x_test_lstm = np.array(x_test_lstm)
        x_test_lstm = np.reshape(x_test_lstm, (x_test_lstm.shape[0], x_test_lstm.shape[1], 1))

        # LSTM Predictions
        lstm_predictions = lstm_model.predict(x_test_lstm)
        lstm_predictions = scaler.inverse_transform(lstm_predictions)
        next_day_lstm_price = lstm_predictions[-1][0]
        
        result = f"Predicted future price for {ticker}: ${next_day_lstm_price:.2f}"

        return result
    except Exception as e:
        return str(e)

# Function to predict next month's price
def predict_next_month_price(ticker, close_price):
    try:
        start_date = '2010-01-01'
        end_date = datetime.now().strftime('%Y-%m-%d')
        data = yf.download(ticker, start=start_date, end=end_date)

        # Prepare the data
        data = data[['Close']]
        dataset = data.values
        scaled_data = scaler.transform(dataset)

        # Append the user inputs as the last row in the data
        user_input = np.array([[close_price]])
        user_input_scaled = scaler.transform(user_input)
        scaled_data = np.vstack([scaled_data, user_input_scaled])

        # Prepare the data for LSTM
        x_test_lstm = []
        for i in range(60, len(scaled_data)):
            x_test_lstm.append(scaled_data[i-60:i])

        x_test_lstm = np.array(x_test_lstm)
        x_test_lstm = np.reshape(x_test_lstm, (x_test_lstm.shape[0], x_test_lstm.shape[1], 1))

        # Predicting the next 30 days
        predictions = []
        for _ in range(30):
            pred = lstm_model.predict(x_test_lstm[-1].reshape(1, 60, 1))
            predictions.append(pred[0])
            new_input = np.append(x_test_lstm[-1][1:], pred)
            x_test_lstm = np.append(x_test_lstm, new_input.reshape(1, 60, 1), axis=0)

        predictions = np.array(predictions)
        next_month_predictions = scaler.inverse_transform(predictions)
        next_month_price = next_month_predictions[-1][0]

        result = f"Predicted price for {ticker} next month: ${next_month_price:.2f}"

        return result
    except Exception as e:
        return str(e)

# Function to display historical data
def display_historical_data(ticker):
    try:
        start_date = '2010-01-01'
        end_date = datetime.now().strftime('%Y-%m-%d')
        data = yf.download(ticker, start=start_date, end=end_date)
        return data.tail(30).iloc[::-1]  # Reverse to have the latest date on top
    except Exception as e:
        return str(e)

# Streamlit interface
st.title("Stockstream")

# Sidebar for adding new stocks
st.sidebar.header("Add a New Stock Ticker")
new_ticker = st.sidebar.text_input("Stock Ticker", value="")
new_full_name = st.sidebar.text_input("Full Name", value="")
if st.sidebar.button("Add Stock Ticker"):
    if new_ticker and new_full_name:
        stock_dict[new_ticker.upper()] = new_full_name

# Sidebar for viewing historical trends
st.sidebar.header("View Historical Trends")
historical_ticker_input = st.sidebar.selectbox("Stock Ticker", [f"{key} - {value}" for key, value in stock_dict.items()], key="sidebar_historical_ticker")
if st.sidebar.button("View Historical Data"):
    ticker = historical_ticker_input.split(' - ')[0]
    data = display_historical_data(ticker)
    st.sidebar.line_chart(data['Close'])

# Tabs for different functionalities
tab1, tab2, tab3 = st.tabs(["Today's Price", "Next Month's Price", "Historical Data"])

with tab1:
    st.header("Today's Price")
    ticker_input = st.selectbox("Stock Ticker", [f"{key} - {value}" for key, value in stock_dict.items()], key="today_ticker")
    open_price = st.number_input("Open Price", value=0.0, key="today_open_price")
    close_price = st.number_input("Close Price", value=0.0, key="today_close_price")
    if st.button("Predict Today's Price"):
        ticker = ticker_input.split(' - ')[0]
        result = predict_stock_price(ticker, open_price, close_price)
        st.write(result)

with tab2:
    st.header("Next Month's Price")
    next_month_ticker_input = st.selectbox("Stock Ticker", [f"{key} - {value}" for key, value in stock_dict.items()], key="next_month_ticker")
    next_month_close_price = st.number_input("Close Price", value=0.0, key="next_month_close_price")
    if st.button("Predict Next Month's Price"):
        ticker = next_month_ticker_input.split(' - ')[0]
        result = predict_next_month_price(ticker, next_month_close_price)
        st.write(result)

with tab3:
    st.header("Historical Data")
    historical_ticker_input = st.selectbox("Stock Ticker", [f"{key} - {value}" for key, value in stock_dict.items()], key="historical_ticker")
    if st.button("View Data"):
        ticker = historical_ticker_input.split(' - ')[0]
        data = display_historical_data(ticker)
        st.dataframe(data)