Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import yfinance as yf | |
from datetime import datetime | |
from tensorflow.keras.models import load_model | |
from joblib import load | |
# Load the saved LSTM model and scaler | |
lstm_model = load_model('lstm_model.h5') | |
scaler = load('scaler.joblib') | |
# Define the list of stocks | |
stock_list = ['GOOG', 'AAPL', 'TSLA', 'AMZN', 'MSFT'] | |
# Function to get the last row of stock data | |
def get_last_stock_data(ticker): | |
try: | |
start_date = '2010-01-01' | |
end_date = datetime.now().strftime('%Y-%m-%d') | |
data = yf.download(ticker, start=start_date, end=end_date) | |
last_row = data.iloc[-1] | |
return last_row.to_dict() | |
except Exception as e: | |
return str(e) | |
# Function to make predictions | |
def predict_stock_price(ticker, open_price, close_price): | |
try: | |
start_date = '2010-01-01' | |
end_date = datetime.now().strftime('%Y-%m-%d') | |
data = yf.download(ticker, start=start_date, end=end_date) | |
# Prepare the data | |
data = data[['Close']] | |
dataset = data.values | |
scaled_data = scaler.transform(dataset) | |
# Append the user inputs as the last row in the data | |
user_input = np.array([[close_price]]) | |
user_input_scaled = scaler.transform(user_input) | |
scaled_data = np.vstack([scaled_data, user_input_scaled]) | |
# Prepare the data for LSTM | |
x_test_lstm = [] | |
for i in range(60, len(scaled_data)): | |
x_test_lstm.append(scaled_data[i-60:i]) | |
x_test_lstm = np.array(x_test_lstm) | |
x_test_lstm = np.reshape(x_test_lstm, (x_test_lstm.shape[0], x_test_lstm.shape[1], 1)) | |
# LSTM Predictions | |
lstm_predictions = lstm_model.predict(x_test_lstm) | |
lstm_predictions = scaler.inverse_transform(lstm_predictions) | |
next_day_lstm_price = lstm_predictions[-1][0] | |
result = f"Predicted future price for {ticker}: ${next_day_lstm_price:.2f}" | |
return result | |
except Exception as e: | |
return str(e) | |
# Function to predict next month's price | |
def predict_next_month_price(ticker, close_price): | |
try: | |
start_date = '2010-01-01' | |
end_date = datetime.now().strftime('%Y-%m-%d') | |
data = yf.download(ticker, start=start_date, end=end_date) | |
# Prepare the data | |
data = data[['Close']] | |
dataset = data.values | |
scaled_data = scaler.transform(dataset) | |
# Append the user inputs as the last row in the data | |
user_input = np.array([[close_price]]) | |
user_input_scaled = scaler.transform(user_input) | |
scaled_data = np.vstack([scaled_data, user_input_scaled]) | |
# Prepare the data for LSTM | |
x_test_lstm = [] | |
for i in range(60, len(scaled_data)): | |
x_test_lstm.append(scaled_data[i-60:i]) | |
x_test_lstm = np.array(x_test_lstm) | |
x_test_lstm = np.reshape(x_test_lstm, (x_test_lstm.shape[0], x_test_lstm.shape[1], 1)) | |
# Predicting the next 30 days | |
predictions = [] | |
for _ in range(30): | |
pred = lstm_model.predict(x_test_lstm[-1].reshape(1, 60, 1)) | |
predictions.append(pred[0]) | |
new_input = np.append(x_test_lstm[-1][1:], pred) | |
x_test_lstm = np.append(x_test_lstm, new_input.reshape(1, 60, 1), axis=0) | |
predictions = np.array(predictions) | |
next_month_predictions = scaler.inverse_transform(predictions) | |
next_month_price = next_month_predictions[-1][0] | |
result = f"Predicted price for {ticker} next month: ${next_month_price:.2f}" | |
return result | |
except Exception as e: | |
return str(e) | |
# Function to display historical data | |
def display_historical_data(ticker): | |
try: | |
start_date = '2010-01-01' | |
end_date = datetime.now().strftime('%Y-%m-%d') | |
data = yf.download(ticker, start=start_date, end=end_date) | |
return data.tail(30) | |
except Exception as e: | |
return str(e) | |
# Streamlit interface | |
st.title("Stock Price Predictor") | |
tab1, tab2, tab3 = st.tabs(["Predict Today's Price", "Predict Next Month's Price", "View Historical Data"]) | |
with tab1: | |
st.header("Predict Today's Price") | |
ticker_input = st.selectbox("Stock Ticker", stock_list) | |
open_price = st.number_input("Open Price", value=0.0) | |
close_price = st.number_input("Close Price", value=0.0) | |
if st.button("Predict Today's Price"): | |
result = predict_stock_price(ticker_input, open_price, close_price) | |
st.write(result) | |
with tab2: | |
st.header("Predict Next Month's Price") | |
next_month_ticker_input = st.selectbox("Stock Ticker", stock_list) | |
next_month_close_price = st.number_input("Close Price", value=0.0) | |
if st.button("Predict Next Month's Price"): | |
result = predict_next_month_price(next_month_ticker_input, next_month_close_price) | |
st.write(result) | |
with tab3: | |
st.header("View Historical Data") | |
historical_ticker_input = st.selectbox("Stock Ticker", stock_list) | |
if st.button("View Data"): | |
data = display_historical_data(historical_ticker_input) | |
st.dataframe(data) | |