Spaces:
Paused
Paused
first commit
Browse files- app.py +59 -0
- packages.txt +0 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import re
|
3 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
def process_filename(filename, question):
|
8 |
+
print(f"Image file: {filename}")
|
9 |
+
print(f"Question: {question}")
|
10 |
+
image = Image.open(filename).convert("RGB")
|
11 |
+
return process_image(image)
|
12 |
+
|
13 |
+
|
14 |
+
def process_image(image, question):
|
15 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
16 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
17 |
+
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
model.to(device)
|
20 |
+
|
21 |
+
# prepare decoder inputs
|
22 |
+
prompt = f"<s_docvqa><s_question>{question}</s_question><s_answer>"
|
23 |
+
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
24 |
+
|
25 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
26 |
+
|
27 |
+
outputs = model.generate(
|
28 |
+
pixel_values.to(device),
|
29 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
30 |
+
max_length=model.decoder.config.max_position_embeddings,
|
31 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
32 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
33 |
+
use_cache=False,
|
34 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
35 |
+
return_dict_in_generate=True,
|
36 |
+
)
|
37 |
+
|
38 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
39 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
40 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
41 |
+
print(processor.token2json(sequence))
|
42 |
+
|
43 |
+
return [True, processor.token2json(sequence)['answer'], ""]
|
44 |
+
|
45 |
+
def process_document(image, question):
|
46 |
+
ret = process_image(image, question)
|
47 |
+
return ret[1]
|
48 |
+
|
49 |
+
description = "DocVQA (document visual question answering)"
|
50 |
+
|
51 |
+
demo = gr.Interface(
|
52 |
+
fn=process_document,
|
53 |
+
inputs=["image", gr.Textbox(label = "Question" )],
|
54 |
+
outputs=gr.Textbox(label = "Response" ),
|
55 |
+
title="Extract data from image",
|
56 |
+
description=description,
|
57 |
+
cache_examples=True)
|
58 |
+
|
59 |
+
demo.launch()
|
packages.txt
ADDED
File without changes
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
torch
|