jadehardouin commited on
Commit
0680f69
·
1 Parent(s): 50f19fa

Update models.py

Browse files
Files changed (1) hide show
  1. models.py +46 -16
models.py CHANGED
@@ -36,11 +36,23 @@ class BaseTCOModel(ABC):
36
 
37
  def set_name(self, name):
38
  self.name = name
 
 
 
 
 
 
39
 
40
  class OpenAIModel(BaseTCOModel):
41
 
42
  def __init__(self):
43
  self.set_name("(SaaS) OpenAI")
 
 
 
 
 
 
44
  super().__init__()
45
 
46
  def render(self):
@@ -54,11 +66,11 @@ class OpenAIModel(BaseTCOModel):
54
  return gr.Dropdown.update(choices=["4K", "16K"])
55
 
56
  self.model = gr.Dropdown(["GPT-4", "GPT-3.5 Turbo"], value="GPT-4",
57
- label="OpenAI model",
58
  interactive=True, visible=False)
59
  self.context_length = gr.Dropdown(["8K", "32K"], value="8K", interactive=True,
60
  label="Context size",
61
- visible=False)
62
  self.model.change(on_model_change, inputs=self.model, outputs=self.context_length)
63
  self.input_length = gr.Number(350, label="Average number of input tokens",
64
  interactive=True, visible=False)
@@ -77,13 +89,22 @@ class OpenAIModel(BaseTCOModel):
77
  else:
78
  cost_per_1k_input_tokens = 0.003
79
 
80
- cost_per_output_token = cost_per_1k_input_tokens * input_length / 1000
81
 
82
  return cost_per_output_token
83
 
84
  class OpenSourceLlama2Model(BaseTCOModel):
 
85
  def __init__(self):
86
  self.set_name("(Open source) Llama 2")
 
 
 
 
 
 
 
 
87
  super().__init__()
88
 
89
  def render(self):
@@ -101,18 +122,20 @@ class OpenSourceLlama2Model(BaseTCOModel):
101
  def on_vm_change(model, vm):
102
  # TO DO: load info from CSV
103
  if model == "Llama 2 7B" and vm == "1x Nvidia A100 (Azure NC24ads A100 v4)":
104
- return gr.Number.update(value=900)
105
  elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure NC48ads A100 v4)":
106
- return gr.Number.update(value=1800)
107
 
108
- self.model = gr.Dropdown(["Llama 2 7B", "Llama 2 70B"], value="Llama 2 7B", visible=False)
109
- self.vm = gr.Dropdown(vm_choices,
 
110
  visible=False,
111
- label="Instance of VM with GPU"
 
112
  )
113
- self.vm_cost_per_hour = gr.Number(3.5, label="VM instance cost per hour",
114
  interactive=True, visible=False)
115
- self.tokens_per_second = gr.Number(900, visible=False,
116
  label="Number of tokens per second for this specific model and VM instance",
117
  interactive=False
118
  )
@@ -120,17 +143,22 @@ class OpenSourceLlama2Model(BaseTCOModel):
120
  interactive=True, visible=False)
121
 
122
  self.model.change(on_model_change, inputs=self.model, outputs=self.vm)
123
- self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=self.tokens_per_second)
124
- self.maxed_out = gr.Slider(minimum=0.01, value=1., step=0.01, label="% maxed out",
125
  info="How much the GPU is fully used.",
126
  interactive=True,
127
  visible=False)
 
 
 
 
128
 
129
- def compute_cost_per_token(self, vm_cost_per_hour, tokens_per_second, maxed_out):
130
- cost_per_token = vm_cost_per_hour / (tokens_per_second * 3600 * maxed_out)
131
  return cost_per_token
132
 
133
  class ModelPage:
 
134
  def __init__(self, Models: BaseTCOModel):
135
  self.models: list[BaseTCOModel] = []
136
  for Model in Models:
@@ -170,8 +198,10 @@ class ModelPage:
170
  for model in self.models:
171
  model_n_args = len(model.get_components_for_cost_computing())
172
  if current_model == model.get_name():
 
173
  model_args = args[begin:begin+model_n_args]
174
- print("Model args: ",model_args)
175
  model_tco = model.compute_cost_per_token(*model_args)
176
- return f"Model {current_model} has TCO {model_tco}"
 
 
177
  begin = begin+model_n_args
 
36
 
37
  def set_name(self, name):
38
  self.name = name
39
+
40
+ def set_formula(self, formula):
41
+ self.formula = formula
42
+
43
+ def get_formula(self):
44
+ return self.formula
45
 
46
  class OpenAIModel(BaseTCOModel):
47
 
48
  def __init__(self):
49
  self.set_name("(SaaS) OpenAI")
50
+ self.set_formula(r"""$CT = \frac{CT\_1K \times 1000}{L}$ <br>
51
+ with: <br>
52
+ CT = Cost per output Token <br>
53
+ CT_1K = Cost per 1000 Tokens (from OpenAI's pricing web page) <br>
54
+ L = Input Length
55
+ """)
56
  super().__init__()
57
 
58
  def render(self):
 
66
  return gr.Dropdown.update(choices=["4K", "16K"])
67
 
68
  self.model = gr.Dropdown(["GPT-4", "GPT-3.5 Turbo"], value="GPT-4",
69
+ label="OpenAI models",
70
  interactive=True, visible=False)
71
  self.context_length = gr.Dropdown(["8K", "32K"], value="8K", interactive=True,
72
  label="Context size",
73
+ visible=False, info="Number of tokens the model considers when processing text")
74
  self.model.change(on_model_change, inputs=self.model, outputs=self.context_length)
75
  self.input_length = gr.Number(350, label="Average number of input tokens",
76
  interactive=True, visible=False)
 
89
  else:
90
  cost_per_1k_input_tokens = 0.003
91
 
92
+ cost_per_output_token = cost_per_1k_input_tokens * 1000 / input_length
93
 
94
  return cost_per_output_token
95
 
96
  class OpenSourceLlama2Model(BaseTCOModel):
97
+
98
  def __init__(self):
99
  self.set_name("(Open source) Llama 2")
100
+ self.set_formula(r"""$CT = \frac{VM\_CH}{TS \times 3600 \times MO \times U}$<br>
101
+ with: <br>
102
+ CT = Cost per Token <br>
103
+ VM_CH = VM Cost per Hour <br>
104
+ TS = Tokens per Second (for an input length of 233 tokens) <br>
105
+ MO = Maxed Out <br>
106
+ U = Used
107
+ """)
108
  super().__init__()
109
 
110
  def render(self):
 
122
  def on_vm_change(model, vm):
123
  # TO DO: load info from CSV
124
  if model == "Llama 2 7B" and vm == "1x Nvidia A100 (Azure NC24ads A100 v4)":
125
+ return [gr.Number.update(value=3.6730), gr.Number.update(value=694.38)]
126
  elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure NC48ads A100 v4)":
127
+ return [gr.Number.update(value=7.346), gr.Number.update(value=1388.76)]
128
 
129
+ self.model = gr.Dropdown(["Llama 2 7B", "Llama 2 70B"], value="Llama 2 7B", label="OpenSource models", visible=False)
130
+ self.vm = gr.Dropdown(vm_choices,
131
+ value="1x Nvidia A100 (Azure NC24ads A100 v4)",
132
  visible=False,
133
+ label="Instance of VM with GPU",
134
+ info="Your options for this choice depend on the model you previously chose"
135
  )
136
+ self.vm_cost_per_hour = gr.Number(3.6730, label="VM instance cost per hour",
137
  interactive=True, visible=False)
138
+ self.tokens_per_second = gr.Number(694.38, visible=False,
139
  label="Number of tokens per second for this specific model and VM instance",
140
  interactive=False
141
  )
 
143
  interactive=True, visible=False)
144
 
145
  self.model.change(on_model_change, inputs=self.model, outputs=self.vm)
146
+ self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=[self.vm_cost_per_hour, self.tokens_per_second])
147
+ self.maxed_out = gr.Slider(minimum=0.01, value=50., step=0.01, label="% maxed out",
148
  info="How much the GPU is fully used.",
149
  interactive=True,
150
  visible=False)
151
+ self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used",
152
+ info="Percentage of time the GPU is used.",
153
+ interactive=True,
154
+ visible=False)
155
 
156
+ def compute_cost_per_token(self, vm_cost_per_hour, tokens_per_second, maxed_out, used):
157
+ cost_per_token = vm_cost_per_hour / (tokens_per_second * 3600 * maxed_out * used)
158
  return cost_per_token
159
 
160
  class ModelPage:
161
+
162
  def __init__(self, Models: BaseTCOModel):
163
  self.models: list[BaseTCOModel] = []
164
  for Model in Models:
 
198
  for model in self.models:
199
  model_n_args = len(model.get_components_for_cost_computing())
200
  if current_model == model.get_name():
201
+
202
  model_args = args[begin:begin+model_n_args]
 
203
  model_tco = model.compute_cost_per_token(*model_args)
204
+ formula = model.get_formula()
205
+ return f"Model {current_model} has TCO {model_tco}", model_tco, formula
206
+
207
  begin = begin+model_n_args