jadehardouin
commited on
Commit
·
db28a13
1
Parent(s):
373e8e8
Update models.py
Browse files
models.py
CHANGED
@@ -49,7 +49,7 @@ class OpenAIModelGPT4(BaseTCOModel):
|
|
49 |
|
50 |
def __init__(self):
|
51 |
self.set_name("(SaaS) OpenAI GPT4")
|
52 |
-
self.
|
53 |
super().__init__()
|
54 |
|
55 |
def render(self):
|
@@ -65,16 +65,16 @@ class OpenAIModelGPT4(BaseTCOModel):
|
|
65 |
self.context_length = gr.Dropdown(["8K", "32K"], value="8K", interactive=True,
|
66 |
label="Context size",
|
67 |
visible=False, info="Number of tokens the model considers when processing text")
|
68 |
-
self.
|
69 |
label="($) Price/1K input prompt tokens",
|
70 |
interactive=False
|
71 |
)
|
72 |
-
self.
|
73 |
label="($) Price/1K output prompt tokens",
|
74 |
interactive=False
|
75 |
)
|
76 |
self.info = gr.Markdown("The cost per input and output tokens values are from OpenAI's [pricing web page](https://openai.com/pricing)", interactive=False, visible=False)
|
77 |
-
self.context_length.change(define_cost_per_token, inputs=self.context_length, outputs=[self.
|
78 |
|
79 |
self.labor = gr.Number(0, visible=False,
|
80 |
label="($) Labor cost per month",
|
@@ -82,9 +82,9 @@ class OpenAIModelGPT4(BaseTCOModel):
|
|
82 |
interactive=True
|
83 |
)
|
84 |
|
85 |
-
def compute_cost_per_token(self,
|
86 |
-
cost_per_input_token = (
|
87 |
-
cost_per_output_token = (
|
88 |
|
89 |
return cost_per_input_token, cost_per_output_token, labor
|
90 |
|
@@ -92,7 +92,7 @@ class OpenAIModelGPT3_5(BaseTCOModel):
|
|
92 |
|
93 |
def __init__(self):
|
94 |
self.set_name("(SaaS) OpenAI GPT3.5 Turbo")
|
95 |
-
self.
|
96 |
super().__init__()
|
97 |
|
98 |
def render(self):
|
@@ -108,16 +108,16 @@ class OpenAIModelGPT3_5(BaseTCOModel):
|
|
108 |
self.context_length = gr.Dropdown(choices=["4K", "16K"], value="4K", interactive=True,
|
109 |
label="Context size",
|
110 |
visible=False, info="Number of tokens the model considers when processing text")
|
111 |
-
self.
|
112 |
label="($) Price/1K input prompt tokens",
|
113 |
interactive=False
|
114 |
)
|
115 |
-
self.
|
116 |
label="($) Price/1K output prompt tokens",
|
117 |
interactive=False
|
118 |
)
|
119 |
self.info = gr.Markdown("The cost per input and output tokens values are from OpenAI's [pricing web page](https://openai.com/pricing)", interactive=False, visible=False)
|
120 |
-
self.context_length.change(define_cost_per_token, inputs=self.context_length, outputs=[self.
|
121 |
|
122 |
self.labor = gr.Number(0, visible=False,
|
123 |
label="($) Labor cost per month",
|
@@ -125,9 +125,9 @@ class OpenAIModelGPT3_5(BaseTCOModel):
|
|
125 |
interactive=True
|
126 |
)
|
127 |
|
128 |
-
def compute_cost_per_token(self,
|
129 |
-
cost_per_input_token = (
|
130 |
-
cost_per_output_token = (
|
131 |
|
132 |
return cost_per_input_token, cost_per_output_token, labor
|
133 |
|
@@ -147,11 +147,11 @@ class OpenSourceLlama2Model(BaseTCOModel):
|
|
147 |
self.vm_cost_per_hour = gr.Number(4.42, label="Instance cost ($) per hour",
|
148 |
interactive=False, visible=False)
|
149 |
self.info_vm = gr.Markdown("This price above is from [CoreWeave's pricing web page](https://www.coreweave.com/gpu-cloud-pricing)", interactive=False, visible=False)
|
150 |
-
self.
|
151 |
label="($) Price/1K input prompt tokens",
|
152 |
interactive=False
|
153 |
)
|
154 |
-
self.
|
155 |
label="($) Price/1K output prompt tokens",
|
156 |
interactive=False
|
157 |
)
|
@@ -167,9 +167,9 @@ class OpenSourceLlama2Model(BaseTCOModel):
|
|
167 |
interactive=True
|
168 |
)
|
169 |
|
170 |
-
def compute_cost_per_token(self,
|
171 |
-
cost_per_input_token = (
|
172 |
-
cost_per_output_token = (
|
173 |
return cost_per_input_token, cost_per_output_token, labor
|
174 |
|
175 |
class CohereModel(BaseTCOModel):
|
@@ -190,26 +190,26 @@ class CohereModel(BaseTCOModel):
|
|
190 |
self.model = gr.Dropdown(["Default", "Custom"], value="Default",
|
191 |
label="Model",
|
192 |
interactive=True, visible=False)
|
193 |
-
self.
|
194 |
label="($) Price/1K input prompt tokens",
|
195 |
interactive=False
|
196 |
)
|
197 |
-
self.
|
198 |
label="($) Price/1K output prompt tokens",
|
199 |
interactive=False
|
200 |
)
|
201 |
self.info = gr.Markdown("The cost per input and output tokens value is from Cohere's [pricing web page](https://cohere.com/pricing?utm_term=&utm_campaign=Cohere+Brand+%26+Industry+Terms&utm_source=adwords&utm_medium=ppc&hsa_acc=4946693046&hsa_cam=20368816223&hsa_grp=154209120409&hsa_ad=666081801359&hsa_src=g&hsa_tgt=dsa-19959388920&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad=1&gclid=CjwKCAjww7KmBhAyEiwA5-PUSlyO7pq0zxeVrhViXMd8WuILW6uY-cfP1-SVuUfs-leUAz14xHlOHxoCmfkQAvD_BwE)", interactive=False, visible=False)
|
202 |
-
self.model.change(on_model_change, inputs=self.model, outputs=[self.
|
203 |
self.labor = gr.Number(0, visible=False,
|
204 |
label="($) Labor cost per month",
|
205 |
info="This is an estimate of the labor cost of the AI engineer in charge of deploying the model",
|
206 |
interactive=True
|
207 |
)
|
208 |
|
209 |
-
def compute_cost_per_token(self,
|
210 |
|
211 |
-
cost_per_input_token =
|
212 |
-
cost_per_output_token =
|
213 |
|
214 |
return cost_per_input_token, cost_per_output_token, labor
|
215 |
|
|
|
49 |
|
50 |
def __init__(self):
|
51 |
self.set_name("(SaaS) OpenAI GPT4")
|
52 |
+
self.set_latency("15s") #Default value for GPT4
|
53 |
super().__init__()
|
54 |
|
55 |
def render(self):
|
|
|
65 |
self.context_length = gr.Dropdown(["8K", "32K"], value="8K", interactive=True,
|
66 |
label="Context size",
|
67 |
visible=False, info="Number of tokens the model considers when processing text")
|
68 |
+
self.input_tokens_cost_per_token = gr.Number(0.03, visible=False,
|
69 |
label="($) Price/1K input prompt tokens",
|
70 |
interactive=False
|
71 |
)
|
72 |
+
self.output_tokens_cost_per_token = gr.Number(0.06, visible=False,
|
73 |
label="($) Price/1K output prompt tokens",
|
74 |
interactive=False
|
75 |
)
|
76 |
self.info = gr.Markdown("The cost per input and output tokens values are from OpenAI's [pricing web page](https://openai.com/pricing)", interactive=False, visible=False)
|
77 |
+
self.context_length.change(define_cost_per_token, inputs=self.context_length, outputs=[self.input_tokens_cost_per_token, self.output_tokens_cost_per_token])
|
78 |
|
79 |
self.labor = gr.Number(0, visible=False,
|
80 |
label="($) Labor cost per month",
|
|
|
82 |
interactive=True
|
83 |
)
|
84 |
|
85 |
+
def compute_cost_per_token(self, input_tokens_cost_per_token, output_tokens_cost_per_token, labor):
|
86 |
+
cost_per_input_token = (input_tokens_cost_per_token / 1000)
|
87 |
+
cost_per_output_token = (output_tokens_cost_per_token / 1000)
|
88 |
|
89 |
return cost_per_input_token, cost_per_output_token, labor
|
90 |
|
|
|
92 |
|
93 |
def __init__(self):
|
94 |
self.set_name("(SaaS) OpenAI GPT3.5 Turbo")
|
95 |
+
self.set_latency("5s") #Default value for GPT3.5 Turbo
|
96 |
super().__init__()
|
97 |
|
98 |
def render(self):
|
|
|
108 |
self.context_length = gr.Dropdown(choices=["4K", "16K"], value="4K", interactive=True,
|
109 |
label="Context size",
|
110 |
visible=False, info="Number of tokens the model considers when processing text")
|
111 |
+
self.input_tokens_cost_per_token = gr.Number(0.0015, visible=False,
|
112 |
label="($) Price/1K input prompt tokens",
|
113 |
interactive=False
|
114 |
)
|
115 |
+
self.output_tokens_cost_per_token = gr.Number(0.002, visible=False,
|
116 |
label="($) Price/1K output prompt tokens",
|
117 |
interactive=False
|
118 |
)
|
119 |
self.info = gr.Markdown("The cost per input and output tokens values are from OpenAI's [pricing web page](https://openai.com/pricing)", interactive=False, visible=False)
|
120 |
+
self.context_length.change(define_cost_per_token, inputs=self.context_length, outputs=[self.input_tokens_cost_per_token, self.output_tokens_cost_per_token])
|
121 |
|
122 |
self.labor = gr.Number(0, visible=False,
|
123 |
label="($) Labor cost per month",
|
|
|
125 |
interactive=True
|
126 |
)
|
127 |
|
128 |
+
def compute_cost_per_token(self, input_tokens_cost_per_token, output_tokens_cost_per_token, labor):
|
129 |
+
cost_per_input_token = (input_tokens_cost_per_token / 1000)
|
130 |
+
cost_per_output_token = (output_tokens_cost_per_token / 1000)
|
131 |
|
132 |
return cost_per_input_token, cost_per_output_token, labor
|
133 |
|
|
|
147 |
self.vm_cost_per_hour = gr.Number(4.42, label="Instance cost ($) per hour",
|
148 |
interactive=False, visible=False)
|
149 |
self.info_vm = gr.Markdown("This price above is from [CoreWeave's pricing web page](https://www.coreweave.com/gpu-cloud-pricing)", interactive=False, visible=False)
|
150 |
+
self.input_tokens_cost_per_token = gr.Number(0.00052, visible=False,
|
151 |
label="($) Price/1K input prompt tokens",
|
152 |
interactive=False
|
153 |
)
|
154 |
+
self.output_tokens_cost_per_token = gr.Number(0.06656, visible=False,
|
155 |
label="($) Price/1K output prompt tokens",
|
156 |
interactive=False
|
157 |
)
|
|
|
167 |
interactive=True
|
168 |
)
|
169 |
|
170 |
+
def compute_cost_per_token(self, input_tokens_cost_per_token, output_tokens_cost_per_token, labor):
|
171 |
+
cost_per_input_token = (input_tokens_cost_per_token / 1000)
|
172 |
+
cost_per_output_token = (output_tokens_cost_per_token / 1000)
|
173 |
return cost_per_input_token, cost_per_output_token, labor
|
174 |
|
175 |
class CohereModel(BaseTCOModel):
|
|
|
190 |
self.model = gr.Dropdown(["Default", "Custom"], value="Default",
|
191 |
label="Model",
|
192 |
interactive=True, visible=False)
|
193 |
+
self.input_tokens_cost_per_token = gr.Number(0.015, visible=False,
|
194 |
label="($) Price/1K input prompt tokens",
|
195 |
interactive=False
|
196 |
)
|
197 |
+
self.output_tokens_cost_per_token = gr.Number(0.015, visible=False,
|
198 |
label="($) Price/1K output prompt tokens",
|
199 |
interactive=False
|
200 |
)
|
201 |
self.info = gr.Markdown("The cost per input and output tokens value is from Cohere's [pricing web page](https://cohere.com/pricing?utm_term=&utm_campaign=Cohere+Brand+%26+Industry+Terms&utm_source=adwords&utm_medium=ppc&hsa_acc=4946693046&hsa_cam=20368816223&hsa_grp=154209120409&hsa_ad=666081801359&hsa_src=g&hsa_tgt=dsa-19959388920&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gad=1&gclid=CjwKCAjww7KmBhAyEiwA5-PUSlyO7pq0zxeVrhViXMd8WuILW6uY-cfP1-SVuUfs-leUAz14xHlOHxoCmfkQAvD_BwE)", interactive=False, visible=False)
|
202 |
+
self.model.change(on_model_change, inputs=self.model, outputs=[self.input_tokens_cost_per_token, self.output_tokens_cost_per_token])
|
203 |
self.labor = gr.Number(0, visible=False,
|
204 |
label="($) Labor cost per month",
|
205 |
info="This is an estimate of the labor cost of the AI engineer in charge of deploying the model",
|
206 |
interactive=True
|
207 |
)
|
208 |
|
209 |
+
def compute_cost_per_token(self, input_tokens_cost_per_token, output_tokens_cost_per_token, labor):
|
210 |
|
211 |
+
cost_per_input_token = input_tokens_cost_per_token / 1000
|
212 |
+
cost_per_output_token = output_tokens_cost_per_token / 1000
|
213 |
|
214 |
return cost_per_input_token, cost_per_output_token, labor
|
215 |
|