jadehardouin
commited on
Commit
Β·
eef299f
1
Parent(s):
2fd6e58
Update app.py
Browse files
app.py
CHANGED
@@ -7,8 +7,9 @@ import matplotlib.pyplot as plt
|
|
7 |
text = "<h1 style='text-align: center; color: #333333; font-size: 40px;'>TCO Comparison Calculator"
|
8 |
text2 = "Please note that the cost/request only defines the infrastructure cost for deployment. The labor cost must be added for the whole AI model service deployment TCO."
|
9 |
description=f"""
|
10 |
-
<p>In this demo application, we help you compare different AI model services, such as Open source or SaaS solutions, based on the Total Cost of Ownership for their deployment
|
11 |
-
<p>Please note that we focus on getting the service up and running, but not the maintenance that follows
|
|
|
12 |
"""
|
13 |
formula = r"""
|
14 |
$CR = \frac{CIT_{1K} \times IT + COT_{1K} \times OT}{1000}$ <br>
|
@@ -19,7 +20,7 @@ $COT_{1K}$ = Cost per 1000 Output Tokens <br>
|
|
19 |
$IT$ = Input Tokens <br>
|
20 |
$OT$ = Output Tokens
|
21 |
"""
|
22 |
-
|
23 |
def on_use_case_change(use_case):
|
24 |
if use_case == "Summarize":
|
25 |
return gr.update(value=500), gr.update(value=200)
|
@@ -73,6 +74,27 @@ def create_table(tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2, late
|
|
73 |
|
74 |
return gr.update(value=centered_styled_data)
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
def update_plot(tco1, tco2, dropdown, dropdown2, labour_cost1, labour_cost2):
|
77 |
|
78 |
request_ranges = list(range(0, 1001, 100)) + list(range(1000, 10001, 500)) + list(range(10000, 100001, 1000)) + list(range(100000, 2000001, 100000))
|
@@ -90,7 +112,7 @@ def update_plot(tco1, tco2, dropdown, dropdown2, labour_cost1, labour_cost2):
|
|
90 |
style = theme.Style()
|
91 |
|
92 |
with gr.Blocks(theme=style) as demo:
|
93 |
-
Models: list[models.BaseTCOModel] = [models.OpenAIModelGPT4, models.OpenAIModelGPT3_5, models.CohereModel, models.
|
94 |
model_names = [Model().get_name() for Model in Models]
|
95 |
gr.Markdown(value=text)
|
96 |
gr.Markdown(value=description)
|
@@ -149,6 +171,6 @@ with gr.Blocks(theme=style) as demo:
|
|
149 |
with gr.Column(scale=2):
|
150 |
plot = gr.LinePlot(visible=False)
|
151 |
|
152 |
-
compute_tco_btn.click(
|
153 |
|
154 |
demo.launch(debug=True)
|
|
|
7 |
text = "<h1 style='text-align: center; color: #333333; font-size: 40px;'>TCO Comparison Calculator"
|
8 |
text2 = "Please note that the cost/request only defines the infrastructure cost for deployment. The labor cost must be added for the whole AI model service deployment TCO."
|
9 |
description=f"""
|
10 |
+
<p>In this demo application, we help you compare different AI model services, such as Open source or SaaS solutions, based on the Total Cost of Ownership for their deployment. π</p>
|
11 |
+
<p>Please note that we focus on getting the service up and running, but not the maintenance that follows.π</p>
|
12 |
+
<p>If you want to <strong>contribute to the calculator</strong> by adding your own AI service option, follow this <a href="https://huggingface.co/spaces/mithril-security/TCO_calculator/blob/main/How_to_contribute.md">tutorial</a> π. </p>
|
13 |
"""
|
14 |
formula = r"""
|
15 |
$CR = \frac{CIT_{1K} \times IT + COT_{1K} \times OT}{1000}$ <br>
|
|
|
20 |
$IT$ = Input Tokens <br>
|
21 |
$OT$ = Output Tokens
|
22 |
"""
|
23 |
+
|
24 |
def on_use_case_change(use_case):
|
25 |
if use_case == "Summarize":
|
26 |
return gr.update(value=500), gr.update(value=200)
|
|
|
74 |
|
75 |
return gr.update(value=centered_styled_data)
|
76 |
|
77 |
+
def compute_cost_per_request(*args):
|
78 |
+
dropdown_id = args[-2]
|
79 |
+
dropdown_id2 = args[-1]
|
80 |
+
if dropdown_id!=None and dropdown_id2!=None:
|
81 |
+
# Separate the arguments for page1 and page2
|
82 |
+
args_list = list(args)
|
83 |
+
args_page1 = args_list[:len(page1.get_all_components_for_cost_computing())] + [dropdown_id, input_tokens, output_tokens]
|
84 |
+
args_page2 = args_list[len(page1.get_all_components_for_cost_computing()):] + [dropdown_id2, input_tokens, output_tokens]
|
85 |
+
# Compute and compare using both pages
|
86 |
+
result_page1 = page1.compute_cost_per_token(*args_page1)
|
87 |
+
result_page2 = page2.compute_cost_per_token(*args_page2)
|
88 |
+
# Unpack the results from the functions
|
89 |
+
tco1, latency, labor_cost1 = result_page1
|
90 |
+
tco2, latency2, labor_cost2 = result_page2
|
91 |
+
|
92 |
+
return tco1, latency, labor_cost1, tco2, latency2, labor_cost2
|
93 |
+
else:
|
94 |
+
raise gr.Error("Please select two AI service options.")
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
def update_plot(tco1, tco2, dropdown, dropdown2, labour_cost1, labour_cost2):
|
99 |
|
100 |
request_ranges = list(range(0, 1001, 100)) + list(range(1000, 10001, 500)) + list(range(10000, 100001, 1000)) + list(range(100000, 2000001, 100000))
|
|
|
112 |
style = theme.Style()
|
113 |
|
114 |
with gr.Blocks(theme=style) as demo:
|
115 |
+
Models: list[models.BaseTCOModel] = [models.OpenAIModelGPT4, models.OpenAIModelGPT3_5, models.CohereModel, models.DIYLlama2Model]
|
116 |
model_names = [Model().get_name() for Model in Models]
|
117 |
gr.Markdown(value=text)
|
118 |
gr.Markdown(value=description)
|
|
|
171 |
with gr.Column(scale=2):
|
172 |
plot = gr.LinePlot(visible=False)
|
173 |
|
174 |
+
compute_tco_btn.click(compute_cost_per_request, inputs=page1.get_all_components_for_cost_computing() + page2.get_all_components_for_cost_computing() + [dropdown, dropdown2], outputs=[tco1, latency, labor_cost1, tco2, latency2, labor_cost2]).then(create_table, inputs=[tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2, latency, latency2], outputs=table).then(compare_info, inputs=[tco1, tco2, dropdown, dropdown2], outputs=[image, ratio]).then(update_plot, inputs=[tco1, tco2, dropdown, dropdown2, labor_cost1, labor_cost2], outputs=plot)
|
175 |
|
176 |
demo.launch(debug=True)
|