Spaces:
Sleeping
Sleeping
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) | |
# OpenAI Chat completion | |
import os | |
from openai import AsyncOpenAI # importing openai for API usage | |
import chainlit as cl # importing chainlit for our app | |
from chainlit.prompt import Prompt, PromptMessage # importing prompt tools | |
from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools | |
from dotenv import load_dotenv | |
from src.retrieval_lib import initialize_index, load_pdf_to_text, split_text, load_text_to_index, query_index, create_answer_prompt, generate_answer | |
load_dotenv() | |
retriever = initialize_index() | |
# marks a function that will be executed at the start of a user session | |
async def start_chat(): | |
settings = { | |
"model": "gpt-3.5-turbo", | |
"temperature": 0, | |
"max_tokens": 500, | |
"top_p": 1, | |
"frequency_penalty": 0, | |
"presence_penalty": 0, | |
} | |
cl.user_session.set("settings", settings) | |
# marks a function that should be run each time the chatbot receives a message from a user | |
async def main(message: cl.Message): | |
settings = cl.user_session.get("settings") | |
client = AsyncOpenAI() | |
print(message.content) | |
# prompt = Prompt( | |
# provider=ChatOpenAI.id, | |
# messages=[ | |
# PromptMessage( | |
# role="system", | |
# template=system_template, | |
# formatted=system_template, | |
# ), | |
# PromptMessage( | |
# role="user", | |
# template=user_template, | |
# formatted=user_template.format(input=message.content), | |
# ), | |
# ], | |
# inputs={"input": message.content}, | |
# settings=settings, | |
#) | |
#print([m.to_openai() for m in prompt.messages]) | |
query = message.content | |
# query = "what is the reason for the lawsuit" | |
retrieved_docs = query_index(retriever, query) | |
print("retrieved_docs: \n", len(retrieved_docs)) | |
answer_prompt = create_answer_prompt() | |
print("answer_prompt: \n", answer_prompt) | |
result = generate_answer(retriever, answer_prompt, query) | |
print("result: \n", result["response"].content) | |
msg = cl.Message(content="") | |
# Call OpenAI | |
#async for stream_resp in await client.chat.completions.create( | |
# messages=[m.to_openai() for m in prompt.messages], stream=True, **settings | |
#): | |
# token = stream_resp.choices[0].delta.content | |
# if not token: | |
# token = "" | |
# await msg.stream_token(token) | |
# Update the prompt object with the completion | |
#prompt.completion = msg.content | |
#msg.prompt = prompt | |
msg.content = result["response"].content | |
# Send and close the message stream | |
await msg.send() | |