# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) # OpenAI Chat completion import os from openai import AsyncOpenAI # importing openai for API usage import chainlit as cl # importing chainlit for our app from chainlit.prompt import Prompt, PromptMessage # importing prompt tools from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools from dotenv import load_dotenv from src.retrieval_lib import initialize_index, load_pdf_to_text, split_text, load_text_to_index, query_index, create_answer_prompt, generate_answer load_dotenv() retriever = initialize_index() @cl.on_chat_start # marks a function that will be executed at the start of a user session async def start_chat(): settings = { "model": "gpt-3.5-turbo", "temperature": 0, "max_tokens": 500, "top_p": 1, "frequency_penalty": 0, "presence_penalty": 0, } cl.user_session.set("settings", settings) @cl.on_message # marks a function that should be run each time the chatbot receives a message from a user async def main(message: cl.Message): settings = cl.user_session.get("settings") client = AsyncOpenAI() print(message.content) # prompt = Prompt( # provider=ChatOpenAI.id, # messages=[ # PromptMessage( # role="system", # template=system_template, # formatted=system_template, # ), # PromptMessage( # role="user", # template=user_template, # formatted=user_template.format(input=message.content), # ), # ], # inputs={"input": message.content}, # settings=settings, #) #print([m.to_openai() for m in prompt.messages]) query = message.content # query = "what is the reason for the lawsuit" retrieved_docs = query_index(retriever, query) print("retrieved_docs: \n", len(retrieved_docs)) answer_prompt = create_answer_prompt() print("answer_prompt: \n", answer_prompt) result = generate_answer(retriever, answer_prompt, query) print("result: \n", result["response"].content) msg = cl.Message(content="") # Call OpenAI #async for stream_resp in await client.chat.completions.create( # messages=[m.to_openai() for m in prompt.messages], stream=True, **settings #): # token = stream_resp.choices[0].delta.content # if not token: # token = "" # await msg.stream_token(token) # Update the prompt object with the completion #prompt.completion = msg.content #msg.prompt = prompt msg.content = result["response"].content # Send and close the message stream await msg.send()