File size: 1,396 Bytes
a152706 200e5f9 978608b 62564a6 a152706 dc4f75a a152706 200e5f9 62564a6 200e5f9 dc4f75a 200e5f9 dc4f75a 200e5f9 a152706 dc4f75a a152706 62564a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
import torch
import soundfile as sf
from speechbrain.inference.TTS import Tacotron2
from speechbrain.inference.vocoders import HIFIGAN
from speechbrain.dataio.dataio import read_audio
# モデルのロード
hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_vocoder")
tacotron2 = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmpdir_tts")
# 推論関数の定義
def synthesize_speech(text):
# テキストをトークンIDに変換
text = text.lower()
tokenized = tacotron2.hparams.tokenize(text, phonemize=False)
# トークンIDをLong型のテンソルに変換
tokens = torch.LongTensor(tokenized)
# Tacotron2でmel spectrogramを生成
mel_output, mel_length, alignment = tacotron2.encode_batch(tokens)
# HiFi-GANでmel spectrogramから音声を生成
waveforms = hifi_gan.decode_batch(mel_output)
# 音声を .wav 形式で保存
sf.write("speech.wav", waveforms.squeeze().cpu().numpy(), samplerate=hifi_gan.hparams.sample_rate)
return "speech.wav"
# Gradioインターフェースの作成
iface = gr.Interface(
fn=synthesize_speech,
inputs=gr.Textbox(lines=5, label="Input Text"),
outputs=gr.Audio(label="Output Audio", type="filepath"),
title="TTS Demo",
description="Enter text to synthesize speech."
)
iface.launch() |