Spaces:
Runtime error
Runtime error
File size: 1,478 Bytes
30f32d0 ed060a2 42031f0 a913d8c 30f32d0 6ef206a 30f32d0 09e4761 30f32d0 ed060a2 30f32d0 13fc1f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
from fastai.vision.all import *
from fastaudio.core.all import *
def get_x(df):
return df.path
def get_y(df):
return df.pattern
learn = load_learner('xresnet50_pitch3.pkl')
labels = learn.dls.vocab
def predict(path):
pred,pred_idx,probs = learn.predict(str(path))
return {labels[i]: float(probs[i]) for i in range(len(labels))}
print(predict('example1.mp3'))
title = "Japanese Pitch Accent Pattern Detector"
description = "Fire and Smoke classifier created with fastai. Created as a demo for Gradio and HuggingFace Spaces. Fire accidents are not uncommon and has catastrophic impact on the company both interms of social and financial terms. This application can be deployed on device and can work as 24X365 surveillance. This app classify an image into three classes. 1. Fire, 2. Smoke, 3. Neutral. Try your hand and check. For any general purpose, model file can be copied and used for the stated purpose"
article="<p style='text-align: center'><a href='https://github.com/mldurga/projects/blob/master/Fire_smoke_detector.ipynb' target='_blank'>Blog post</a></p>"
interpretation='default'
examples = ['example1.mp3']
enable_queue=True
gr.Interface(fn=predict,inputs=gr.inputs.Audio(source='microphone', type='filepath'),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,interpretation=interpretation,examples=examples).launch(debug=True,share=True,enable_queue=enable_queue)
|