|
import pandas as pd |
|
from huggingface_hub import add_collection_item, delete_collection_item, get_collection, update_collection_item |
|
from huggingface_hub.utils._errors import HfHubHTTPError |
|
from pandas import DataFrame |
|
|
|
from src.display.utils import AutoEvalColumn, ModelType |
|
from src.envs import H4_TOKEN, PATH_TO_COLLECTION |
|
|
|
|
|
intervals = { |
|
"1B": pd.Interval(0, 1.5, closed="right"), |
|
"3B": pd.Interval(2.5, 3.5, closed="neither"), |
|
"7B": pd.Interval(6, 8, closed="neither"), |
|
"13B": pd.Interval(10, 14, closed="neither"), |
|
"30B": pd.Interval(25, 35, closed="neither"), |
|
"65B": pd.Interval(60, 70, closed="neither"), |
|
} |
|
|
|
|
|
def _filter_by_type_and_size(df, model_type, size_interval): |
|
"""Filter DataFrame by model type and parameter size interval.""" |
|
type_emoji = model_type.value.symbol[0] |
|
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name] == type_emoji] |
|
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") |
|
mask = params_column.apply(lambda x: x in size_interval) |
|
return filtered_df.loc[mask] |
|
|
|
|
|
def _add_models_to_collection(collection, models, model_type, size): |
|
"""Add best models to the collection and update positions.""" |
|
cur_len_collection = len(collection.items) |
|
for ix, model in enumerate(models, start=1): |
|
try: |
|
collection = add_collection_item( |
|
PATH_TO_COLLECTION, |
|
item_id=model, |
|
item_type="model", |
|
exists_ok=True, |
|
note=f"Best {model_type.to_str(' ')} model of around {size} on the leaderboard today!", |
|
token=H4_TOKEN, |
|
) |
|
|
|
if len(collection.items) > cur_len_collection: |
|
item_object_id = collection.items[-1].item_object_id |
|
update_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_object_id, position=ix) |
|
cur_len_collection = len(collection.items) |
|
break |
|
except HfHubHTTPError: |
|
continue |
|
|
|
|
|
def update_collections(df: DataFrame): |
|
"""Update collections by filtering and adding the best models.""" |
|
collection = get_collection(collection_slug=PATH_TO_COLLECTION, token=H4_TOKEN) |
|
cur_best_models = [] |
|
|
|
for model_type in ModelType: |
|
if not model_type.value.name: |
|
continue |
|
for size, interval in intervals.items(): |
|
filtered_df = _filter_by_type_and_size(df, model_type, interval) |
|
best_models = list( |
|
filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.fullname.name][:10] |
|
) |
|
print(model_type.value.symbol, size, best_models) |
|
_add_models_to_collection(collection, best_models, model_type, size) |
|
cur_best_models.extend(best_models) |
|
|
|
|
|
existing_models = {item.item_id for item in collection.items} |
|
to_remove = existing_models - set(cur_best_models) |
|
for item_id in to_remove: |
|
try: |
|
delete_collection_item(collection_slug=PATH_TO_COLLECTION, item_object_id=item_id, token=H4_TOKEN) |
|
except HfHubHTTPError: |
|
continue |
|
|