parms-count (#887)
Browse files- Remove unused imports and script (37e5956acdba9170044107933a6fb8eb46791b91)
- Set unknown model size to -1 and improve logging (24c603a94b2be77d259de83ec68c41e906dbcd71)
- app.py +0 -8
- src/submission/check_validity.py +12 -6
- src/tools/plots.py +0 -152
app.py
CHANGED
@@ -17,9 +17,7 @@ from src.display.about import (
|
|
17 |
CITATION_BUTTON_LABEL,
|
18 |
CITATION_BUTTON_TEXT,
|
19 |
EVALUATION_QUEUE_TEXT,
|
20 |
-
FAQ_TEXT,
|
21 |
INTRODUCTION_TEXT,
|
22 |
-
LLM_BENCHMARKS_TEXT,
|
23 |
TITLE,
|
24 |
)
|
25 |
from src.display.css_html_js import custom_css
|
@@ -48,7 +46,6 @@ from src.envs import (
|
|
48 |
)
|
49 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
50 |
from src.submission.submit import add_new_eval
|
51 |
-
from src.tools.plots import create_metric_plot_obj, create_plot_df, create_scores_df
|
52 |
from src.voting.vote_system import VoteManager, run_scheduler
|
53 |
|
54 |
# Configure logging
|
@@ -169,11 +166,6 @@ LEADERBOARD_DF, eval_queue_dfs = init_space()
|
|
169 |
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
|
170 |
|
171 |
|
172 |
-
# Data processing for plots now only on demand in the respective Gradio tab
|
173 |
-
def load_and_create_plots():
|
174 |
-
plot_df = create_plot_df(create_scores_df(LEADERBOARD_DF))
|
175 |
-
return plot_df
|
176 |
-
|
177 |
# Function to check if a user is logged in
|
178 |
def check_login(profile: gr.OAuthProfile | None) -> bool:
|
179 |
if profile is None:
|
|
|
17 |
CITATION_BUTTON_LABEL,
|
18 |
CITATION_BUTTON_TEXT,
|
19 |
EVALUATION_QUEUE_TEXT,
|
|
|
20 |
INTRODUCTION_TEXT,
|
|
|
21 |
TITLE,
|
22 |
)
|
23 |
from src.display.css_html_js import custom_css
|
|
|
46 |
)
|
47 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
48 |
from src.submission.submit import add_new_eval
|
|
|
49 |
from src.voting.vote_system import VoteManager, run_scheduler
|
50 |
|
51 |
# Configure logging
|
|
|
166 |
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = eval_queue_dfs
|
167 |
|
168 |
|
|
|
|
|
|
|
|
|
|
|
169 |
# Function to check if a user is logged in
|
170 |
def check_login(profile: gr.OAuthProfile | None) -> bool:
|
171 |
if profile is None:
|
src/submission/check_validity.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import json
|
2 |
import os
|
3 |
import re
|
|
|
4 |
from collections import defaultdict
|
5 |
from datetime import datetime, timedelta, timezone
|
6 |
|
@@ -75,28 +76,33 @@ def is_model_on_hub(
|
|
75 |
return False, f"was not found or misconfigured on the hub! Error raised was {e.args[0]}", None
|
76 |
|
77 |
|
78 |
-
def get_model_size(model_info: ModelInfo, precision: str):
|
79 |
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
|
80 |
safetensors = None
|
|
|
81 |
try:
|
82 |
safetensors = get_safetensors_metadata(model_info.id)
|
83 |
except Exception as e:
|
84 |
-
|
85 |
|
86 |
if safetensors is not None:
|
87 |
model_size = round(sum(safetensors.parameter_count.values()) / 1e9, 3)
|
88 |
else:
|
89 |
try:
|
90 |
size_match = re.search(size_pattern, model_info.id.lower())
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
93 |
except AttributeError:
|
94 |
-
|
|
|
95 |
|
96 |
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
|
97 |
model_size = size_factor * model_size
|
98 |
-
return model_size
|
99 |
|
|
|
100 |
|
101 |
def get_model_arch(model_info: ModelInfo):
|
102 |
return model_info.config.get("architectures", "Unknown")
|
|
|
1 |
import json
|
2 |
import os
|
3 |
import re
|
4 |
+
import logging
|
5 |
from collections import defaultdict
|
6 |
from datetime import datetime, timedelta, timezone
|
7 |
|
|
|
76 |
return False, f"was not found or misconfigured on the hub! Error raised was {e.args[0]}", None
|
77 |
|
78 |
|
79 |
+
def get_model_size(model_info: ModelInfo, precision: str) -> float:
|
80 |
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
|
81 |
safetensors = None
|
82 |
+
|
83 |
try:
|
84 |
safetensors = get_safetensors_metadata(model_info.id)
|
85 |
except Exception as e:
|
86 |
+
logging.error(f"Failed to get safetensors metadata for model {model_info.id}: {str(e)}")
|
87 |
|
88 |
if safetensors is not None:
|
89 |
model_size = round(sum(safetensors.parameter_count.values()) / 1e9, 3)
|
90 |
else:
|
91 |
try:
|
92 |
size_match = re.search(size_pattern, model_info.id.lower())
|
93 |
+
if size_match:
|
94 |
+
model_size = size_match.group(0)
|
95 |
+
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
|
96 |
+
else:
|
97 |
+
return -1 # Unknown model size
|
98 |
except AttributeError:
|
99 |
+
logging.warning(f"Unable to parse model size from ID: {model_info.id}")
|
100 |
+
return -1 # Unknown model size
|
101 |
|
102 |
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
|
103 |
model_size = size_factor * model_size
|
|
|
104 |
|
105 |
+
return model_size
|
106 |
|
107 |
def get_model_arch(model_info: ModelInfo):
|
108 |
return model_info.config.get("architectures", "Unknown")
|
src/tools/plots.py
DELETED
@@ -1,152 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import pandas as pd
|
3 |
-
import plotly.express as px
|
4 |
-
from plotly.graph_objs import Figure
|
5 |
-
|
6 |
-
from src.display.utils import BENCHMARK_COLS, AutoEvalColumn, Task, Tasks
|
7 |
-
# from src.display.utils import human_baseline_row as HUMAN_BASELINE
|
8 |
-
from src.leaderboard.filter_models import FLAGGED_MODELS
|
9 |
-
|
10 |
-
|
11 |
-
def create_scores_df(results_df: list[dict]) -> pd.DataFrame:
|
12 |
-
"""
|
13 |
-
Generates a DataFrame containing the maximum scores until each date.
|
14 |
-
|
15 |
-
:param results_df: A DataFrame containing result information including metric scores and dates.
|
16 |
-
:return: A new DataFrame containing the maximum scores until each date for every metric.
|
17 |
-
"""
|
18 |
-
# Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it
|
19 |
-
results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True)
|
20 |
-
results_df.sort_values(by="date", inplace=True)
|
21 |
-
|
22 |
-
# Step 2: Initialize the scores dictionary
|
23 |
-
scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]}
|
24 |
-
|
25 |
-
# Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
|
26 |
-
for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]:
|
27 |
-
current_max = 0
|
28 |
-
last_date = ""
|
29 |
-
column = task.col_name
|
30 |
-
for _, row in results_df.iterrows():
|
31 |
-
current_model = row[AutoEvalColumn.fullname.name]
|
32 |
-
# We ignore models that are flagged/no longer on the hub/not finished
|
33 |
-
to_ignore = (
|
34 |
-
not row[AutoEvalColumn.still_on_hub.name]
|
35 |
-
or not row[AutoEvalColumn.not_flagged.name]
|
36 |
-
or current_model in FLAGGED_MODELS
|
37 |
-
)
|
38 |
-
if to_ignore:
|
39 |
-
continue
|
40 |
-
|
41 |
-
current_date = row[AutoEvalColumn.date.name]
|
42 |
-
current_score = row[task.col_name]
|
43 |
-
|
44 |
-
if current_score > current_max:
|
45 |
-
if current_date == last_date and len(scores[column]) > 0:
|
46 |
-
scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score}
|
47 |
-
else:
|
48 |
-
scores[column].append({"model": current_model, "date": current_date, "score": current_score})
|
49 |
-
current_max = current_score
|
50 |
-
last_date = current_date
|
51 |
-
|
52 |
-
# Step 4: Return all dictionaries as DataFrames
|
53 |
-
return {k: pd.DataFrame(v) for k, v in scores.items()}
|
54 |
-
|
55 |
-
|
56 |
-
def create_plot_df(scores_df: dict[str : pd.DataFrame]) -> pd.DataFrame:
|
57 |
-
"""
|
58 |
-
Transforms the scores DataFrame into a new format suitable for plotting.
|
59 |
-
|
60 |
-
:param scores_df: A DataFrame containing metric scores and dates.
|
61 |
-
:return: A new DataFrame reshaped for plotting purposes.
|
62 |
-
"""
|
63 |
-
# Initialize the list to store DataFrames
|
64 |
-
dfs = []
|
65 |
-
# Iterate over the cols and create a new DataFrame for each column
|
66 |
-
for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]:
|
67 |
-
d = scores_df[col].reset_index(drop=True)
|
68 |
-
d["task"] = col
|
69 |
-
dfs.append(d)
|
70 |
-
|
71 |
-
# Concatenate all the created DataFrames
|
72 |
-
concat_df = pd.concat(dfs, ignore_index=True)
|
73 |
-
|
74 |
-
# # Sort values by 'date'
|
75 |
-
# concat_df.sort_values(by="date", inplace=True)
|
76 |
-
# concat_df.reset_index(drop=True, inplace=True)
|
77 |
-
# return concat_df
|
78 |
-
|
79 |
-
|
80 |
-
def create_metric_plot_obj(df: pd.DataFrame, metrics: list[str], title: str) -> Figure:
|
81 |
-
"""
|
82 |
-
Create a Plotly figure object with lines representing different metrics
|
83 |
-
and horizontal dotted lines representing human baselines.
|
84 |
-
|
85 |
-
:param df: The DataFrame containing the metric values, names, and dates.
|
86 |
-
:param metrics: A list of strings representing the names of the metrics
|
87 |
-
to be included in the plot.
|
88 |
-
:param title: A string representing the title of the plot.
|
89 |
-
:return: A Plotly figure object with lines representing metrics and
|
90 |
-
horizontal dotted lines representing human baselines.
|
91 |
-
"""
|
92 |
-
|
93 |
-
# Filter the DataFrame based on the specified metrics
|
94 |
-
df = df[df["task"].isin(metrics)]
|
95 |
-
|
96 |
-
# Filter the human baselines based on the specified metrics
|
97 |
-
filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics}
|
98 |
-
|
99 |
-
# Create a line figure using plotly express with specified markers and custom data
|
100 |
-
fig = px.line(
|
101 |
-
df,
|
102 |
-
x="date",
|
103 |
-
y="score",
|
104 |
-
color="task",
|
105 |
-
markers=True,
|
106 |
-
custom_data=["task", "score", "model"],
|
107 |
-
title=title,
|
108 |
-
)
|
109 |
-
|
110 |
-
# Update hovertemplate for better hover interaction experience
|
111 |
-
fig.update_traces(
|
112 |
-
hovertemplate="<br>".join(
|
113 |
-
[
|
114 |
-
"Model Name: %{customdata[2]}",
|
115 |
-
"Metric Name: %{customdata[0]}",
|
116 |
-
"Date: %{x}",
|
117 |
-
"Metric Value: %{y}",
|
118 |
-
]
|
119 |
-
)
|
120 |
-
)
|
121 |
-
|
122 |
-
# Update the range of the y-axis
|
123 |
-
fig.update_layout(yaxis_range=[0, 100])
|
124 |
-
|
125 |
-
# Create a dictionary to hold the color mapping for each metric
|
126 |
-
metric_color_mapping = {}
|
127 |
-
|
128 |
-
# Map each metric name to its color in the figure
|
129 |
-
for trace in fig.data:
|
130 |
-
metric_color_mapping[trace.name] = trace.line.color
|
131 |
-
|
132 |
-
# Iterate over filtered human baselines and add horizontal lines to the figure
|
133 |
-
for metric, value in filtered_human_baselines.items():
|
134 |
-
color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found
|
135 |
-
location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position
|
136 |
-
# Add horizontal line with matched color and positioned annotation
|
137 |
-
fig.add_hline(
|
138 |
-
y=value,
|
139 |
-
line_dash="dot",
|
140 |
-
annotation_text=f"{metric} human baseline",
|
141 |
-
annotation_position=location,
|
142 |
-
annotation_font_size=10,
|
143 |
-
annotation_font_color=color,
|
144 |
-
line_color=color,
|
145 |
-
)
|
146 |
-
|
147 |
-
return fig
|
148 |
-
|
149 |
-
|
150 |
-
# Example Usage:
|
151 |
-
# human_baselines dictionary is defined.
|
152 |
-
# chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|