Spaces:
Build error
Build error
import os | |
import random | |
import torch | |
import gradio as gr | |
from e4e.models.psp import pSp | |
from util import * | |
from huggingface_hub import hf_hub_download | |
import tempfile | |
from argparse import Namespace | |
import shutil | |
import dlib | |
import numpy as np | |
import torchvision.transforms as transforms | |
from torchvision import utils | |
from model.sg2_model import Generator | |
from generate_videos import generate_frames, video_from_interpolations, project_code_by_edit_name | |
from styleclip.styleclip_global import project_code_with_styleclip, style_tensor_to_style_dict | |
import clip | |
model_dir = "models" | |
os.makedirs(model_dir, exist_ok=True) | |
model_repos = {"e4e": ("akhaliq/JoJoGAN_e4e_ffhq_encode", "e4e_ffhq_encode.pt"), | |
"dlib": ("akhaliq/jojogan_dlib", "shape_predictor_68_face_landmarks.dat"), | |
"sc_fs3": ("rinong/stylegan-nada-models", "fs3.npy"), | |
"base": ("akhaliq/jojogan-stylegan2-ffhq-config-f", "stylegan2-ffhq-config-f.pt"), | |
"sketch": ("rinong/stylegan-nada-models", "sketch.pt"), | |
"heat_miser": ("mjdolan/stylegan-nada-models", "heat.pt"), | |
"santa": ("mjdolan/stylegan-nada-models", "santa.pt"), | |
"jesus": ("mjdolan/stylegan-nada-models", "jesus.pt"), | |
"mariah": ("mjdolan/stylegan-nada-models", "mariah.pt"), | |
"claymation": ("mjdolan/stylegan-nada-models", "claymation.pt") | |
} | |
def get_models(): | |
os.makedirs(model_dir, exist_ok=True) | |
model_paths = {} | |
for model_name, repo_details in model_repos.items(): | |
download_path = hf_hub_download(repo_id=repo_details[0], filename=repo_details[1]) | |
model_paths[model_name] = download_path | |
return model_paths | |
model_paths = get_models() | |
class ImageEditor(object): | |
def __init__(self): | |
self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
latent_size = 512 | |
n_mlp = 8 | |
channel_mult = 2 | |
model_size = 1024 | |
self.generators = {} | |
self.model_list = [name for name in model_paths.keys() if name not in ["e4e", "dlib", "sc_fs3"]] | |
for model in self.model_list: | |
g_ema = Generator( | |
model_size, latent_size, n_mlp, channel_multiplier=channel_mult | |
).to(self.device) | |
checkpoint = torch.load(model_paths[model], map_location=self.device) | |
g_ema.load_state_dict(checkpoint['g_ema']) | |
self.generators[model] = g_ema | |
self.experiment_args = {"model_path": model_paths["e4e"]} | |
self.experiment_args["transform"] = transforms.Compose( | |
[ | |
transforms.Resize((256, 256)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
] | |
) | |
self.resize_dims = (256, 256) | |
model_path = self.experiment_args["model_path"] | |
ckpt = torch.load(model_path, map_location="cpu") | |
opts = ckpt["opts"] | |
opts["checkpoint_path"] = model_path | |
opts = Namespace(**opts) | |
self.e4e_net = pSp(opts, self.device) | |
self.e4e_net.eval() | |
self.shape_predictor = dlib.shape_predictor( | |
model_paths["dlib"] | |
) | |
self.styleclip_fs3 = torch.from_numpy(np.load(model_paths["sc_fs3"])).to(self.device) | |
self.clip_model, _ = clip.load("ViT-B/32", device=self.device) | |
print("setup complete") | |
def get_style_list(self): | |
style_list = [] | |
for key in self.generators: | |
style_list.append(key) | |
return style_list | |
def invert_image(self, input_image): | |
input_image = self.run_alignment(str(input_image)) | |
input_image = input_image.resize(self.resize_dims) | |
img_transforms = self.experiment_args["transform"] | |
transformed_image = img_transforms(input_image) | |
with torch.no_grad(): | |
images, latents = self.run_on_batch(transformed_image.unsqueeze(0)) | |
result_image, latent = images[0], latents[0] | |
inverted_latent = latent.unsqueeze(0).unsqueeze(1) | |
return inverted_latent | |
def get_generators_for_styles(self, output_styles, loop_styles=False): | |
if "base" in output_styles: # always start with base if chosen | |
output_styles.insert(0, output_styles.pop(output_styles.index("base"))) | |
if loop_styles: | |
output_styles.append(output_styles[0]) | |
return [self.generators[style] for style in output_styles] | |
def _pack_edits(func): | |
def inner(self, | |
pose_slider, | |
smile_slider, | |
gender_slider, | |
age_slider, | |
hair_slider, | |
*args): | |
edit_choices = { | |
"pose": pose_slider, | |
"smile": smile_slider, | |
"gender": gender_slider, | |
"age": age_slider, | |
"hair_length": hair_slider} | |
return func(self, *args, edit_choices) | |
return inner | |
def get_target_latents(self, source_latent, edit_choices, generators): | |
target_latents = [] | |
np_source_latent = source_latent.squeeze(0).cpu().detach().numpy() | |
for attribute_name in ["pose", "smile", "gender", "age", "hair_length"]: | |
strength = edit_choices[attribute_name] | |
if strength != 0.0: | |
projected_code_np = project_code_by_edit_name(np_source_latent, attribute_name, strength) | |
target_latents.append(torch.from_numpy(projected_code_np).float().to(self.device)) | |
# if edit type is none or if all sliders were set to 0 | |
if not target_latents: | |
target_latents = [source_latent.squeeze(0), ] * max((len(generators) - 1), 1) | |
return target_latents | |
def edit_image(self, input, output_styles, edit_choices): | |
return self.predict(input, output_styles, edit_choices=edit_choices) | |
def edit_video(self, input, output_styles, loop_styles, edit_choices): | |
return self.predict(input, output_styles, generate_video=True, loop_styles=loop_styles, edit_choices=edit_choices) | |
def predict( | |
self, | |
input, # Input image path | |
output_styles, # Style checkbox options. | |
generate_video = False, # Generate a video instead of an output image | |
loop_styles = False, # Loop back to the initial style | |
edit_choices = None, # Optional dictionary with edit choice arguments | |
): | |
if edit_choices is None: | |
edit_choices = {"edit_type": "None"} | |
# @title Align image | |
out_dir = tempfile.mkdtemp() | |
inverted_latent = self.invert_image(input) | |
generators = self.get_generators_for_styles(output_styles, loop_styles) | |
target_latents = self.get_target_latents(inverted_latent, edit_choices, generators) | |
if not generate_video: | |
output_paths = [] | |
with torch.no_grad(): | |
for g_ema in generators: | |
latent_for_gen = random.choice(target_latents) | |
img, _ = g_ema([latent_for_gen], input_is_latent=True, truncation=1, randomize_noise=False) | |
output_path = os.path.join(out_dir, f"out_{len(output_paths)}.jpg") | |
utils.save_image(img, output_path, nrow=1, normalize=True, range=(-1, 1)) | |
output_paths.append(output_path) | |
return output_paths | |
return self.generate_vid(generators, inverted_latent, target_latents, out_dir) | |
def generate_vid(self, generators, source_latent, target_latents, out_dir): | |
fps = 24 | |
with tempfile.TemporaryDirectory() as dirpath: | |
generate_frames(source_latent, target_latents, generators, dirpath) | |
video_from_interpolations(fps, dirpath) | |
gen_path = os.path.join(dirpath, "out.mp4") | |
out_path = os.path.join(out_dir, "out.mp4") | |
shutil.copy2(gen_path, out_path) | |
return out_path | |
def run_alignment(self, image_path): | |
aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor) | |
print("Aligned image has shape: {}".format(aligned_image.size)) | |
return aligned_image | |
def run_on_batch(self, inputs): | |
images, latents = self.e4e_net( | |
inputs.to(self.device).float(), randomize_noise=False, return_latents=True | |
) | |
return images, latents | |
editor = ImageEditor() | |
blocks = gr.Blocks() | |
with blocks: | |
gr.Markdown("<h1><center>StyleGAN-NADA</center></h1>") | |
gr.Markdown( | |
"<h4 style='font-size: 110%;margin-top:.5em'>Inference demo for StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators (SIGGRAPH 2022).</h4>" | |
) | |
gr.Markdown( | |
"<h4 style='font-size: 110%;margin-top:.5em'>Usage</h4><div>Upload an image of your face, pick your desired output styles, and apply StyleGAN-based editing.</div>" | |
"<div>Choose the edit image tab to create static images in all chosen styles. Choose the video tab in order to interpolate between all chosen styles</div><div>(To make it easier on the servers, we've limited video length. If you add too many styles (we recommend no more than 3!), they'll pass in the blink of an eye! 🤗)</div>" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.inputs.Image(type="filepath", label="Input image") | |
with gr.Column(): | |
style_choice = gr.inputs.CheckboxGroup(choices=editor.get_style_list(), type="value", label="Choose your styles!") | |
with gr.Row(): | |
with gr.Column(): | |
img_button = gr.Button("Edit Image") | |
img_output = gr.Gallery(label="Output Images") | |
with gr.Column(): | |
gr.Markdown("Move the sliders to make the chosen attribute stronger (e.g. the person older) or leave at 0 to disable editing.") | |
gr.Markdown("If multiple options are provided, they will be used randomly between images (or sequentially for a video), <u>not</u> together.") | |
gr.Markdown("Please note that some directions may be entangled. For example, hair length adjustments are likely to also modify the perceived gender.") | |
gr.Markdown("For more information about InterFaceGAN, please visit <a href='https://github.com/genforce/interfacegan' target='_blank'>the official repository</a>") | |
pose_slider = gr.Slider(label="Pose", minimum=-1, maximum=1, value=0, step=0.05) | |
smile_slider = gr.Slider(label="Smile", minimum=-1, maximum=1, value=0, step=0.05) | |
gender_slider = gr.Slider(label="Perceived Gender", minimum=-1, maximum=1, value=0, step=0.05) | |
age_slider = gr.Slider(label="Age", minimum=-1, maximum=1, value=0, step=0.05) | |
hair_slider = gr.Slider(label="Hair Length", minimum=-1, maximum=1, value=0, step=0.05) | |
ig_edit_choices = [pose_slider, smile_slider, gender_slider, age_slider, hair_slider] | |
img_button.click(fn=editor.edit_image, inputs=ig_edit_choices + [input_img, style_choice], outputs=img_output) | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.00946' target='_blank'>StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators</a> | <a href='https://stylegan-nada.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/rinongal/StyleGAN-nada' target='_blank'>Code</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=rinong_sgnada' alt='visitor badge'></center>" | |
gr.Markdown(article) | |
blocks.launch(enable_queue=True) |