File size: 10,304 Bytes
e59dc66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# Azure Machine Learning Deployment Guide
This guide provides step-by-step instructions for deploying the Image Description application to Azure Machine Learning.
## Prerequisites
- Azure subscription
- Azure CLI installed and configured
- Azure Machine Learning workspace
- The source code from this repository
## Step 1: Set Up Azure Machine Learning
1. Create a Resource Group (if you don't have one):
```bash
az group create --name image-descriptor-rg --location eastus
```
2. Create an Azure Machine Learning workspace:
```bash
az ml workspace create --workspace-name image-descriptor-ws \
--resource-group image-descriptor-rg \
--location eastus
```
## Step 2: Create a Compute Cluster
Create a GPU-enabled compute cluster for training and inference:
```bash
az ml compute create --name gpu-cluster \
--workspace-name image-descriptor-ws \
--resource-group image-descriptor-rg \
--type AmlCompute \
--min-instances 0 \
--max-instances 1 \
--size Standard_NC6s_v3
```
## Step 3: Prepare Environment Configuration
Create an environment.yml file to define dependencies:
```yaml
name: image_descriptor_env
channels:
- pytorch
- conda-forge
- defaults
dependencies:
- python=3.9
- pip=23.0
- pytorch=2.0.0
- torchvision=0.15.0
- pip:
- transformers>=4.36.0
- accelerate>=0.25.0
- bitsandbytes>=0.41.0
- safetensors>=0.4.0
- flask>=2.3.2
- flask-cors>=4.0.0
- gunicorn>=21.2.0
- pillow>=10.0.0
- matplotlib>=3.7.0
- python-dotenv>=1.0.0
- azureml-core>=1.48.0
- azureml-defaults>=1.48.0
- inference-schema>=1.4.1
```
## Step 4: Create a Model Entry Script
Create a file called `score.py` to handle Azure ML model inference:
```python
import json
import os
import io
import base64
import logging
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables
model = None
processor = None
tokenizer = None
def init():
"""Initialize the model when the service starts"""
global model, processor, tokenizer
logger.info("Loading model...")
model_id = "Qwen/Qwen2-VL-7B"
# Load model components with quantization for efficiency
processor = AutoProcessor.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load model with 4-bit quantization to reduce memory requirements
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
load_in_4bit=True,
device_map="auto"
)
logger.info("Model loaded successfully")
def run(raw_data):
"""Process an image and generate descriptions
Args:
raw_data: A JSON string containing the image as base64 encoded data
Returns:
A JSON string containing the descriptions
"""
global model, processor, tokenizer
try:
# Parse input
data = json.loads(raw_data)
# Get the image data (from base64 or URL)
if 'image_data' in data:
image_bytes = base64.b64decode(data['image_data'])
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
logger.info("Loaded image from base64 data")
elif 'image_url' in data:
# Handle image URLs (for Azure Storage or public URLs)
from urllib.request import urlopen
with urlopen(data['image_url']) as response:
image_bytes = response.read()
image = Image.open(io.BytesIO(image_bytes)).convert('RGB')
logger.info(f"Loaded image from URL: {data['image_url']}")
else:
return json.dumps({"error": "No image data or URL provided"})
# Process the image
inputs = processor(
images=image,
return_tensors="pt"
).to(model.device)
# Basic description prompt
prompt_basic = "Describe this image briefly."
input_ids_basic = tokenizer(prompt_basic, return_tensors="pt").input_ids.to(model.device)
# Detailed description prompt
prompt_detailed = "Analyze this image in detail. Describe the main elements, any text visible, the colors, and the overall composition."
input_ids_detailed = tokenizer(prompt_detailed, return_tensors="pt").input_ids.to(model.device)
# Technical analysis prompt
prompt_technical = "What can you tell me about the technical aspects of this image?"
input_ids_technical = tokenizer(prompt_technical, return_tensors="pt").input_ids.to(model.device)
# Generate outputs for each prompt
# Basic description
with torch.no_grad():
output_basic = model.generate(
**inputs,
input_ids=input_ids_basic,
max_new_tokens=150,
do_sample=False
)
basic_description = tokenizer.decode(output_basic[0], skip_special_tokens=True).replace(prompt_basic, "").strip()
# Detailed description
with torch.no_grad():
output_detailed = model.generate(
**inputs,
input_ids=input_ids_detailed,
max_new_tokens=300,
do_sample=False
)
detailed_description = tokenizer.decode(output_detailed[0], skip_special_tokens=True).replace(prompt_detailed, "").strip()
# Technical analysis
with torch.no_grad():
output_technical = model.generate(
**inputs,
input_ids=input_ids_technical,
max_new_tokens=200,
do_sample=False
)
technical_analysis = tokenizer.decode(output_technical[0], skip_special_tokens=True).replace(prompt_technical, "").strip()
# Return the results
return json.dumps({
"success": True,
"basic_description": basic_description,
"detailed_description": detailed_description,
"technical_analysis": technical_analysis
})
except Exception as e:
logger.error(f"Error processing image: {str(e)}", exc_info=True)
return json.dumps({"error": f"Error generating description: {str(e)}"})
```
## Step 5: Register the Model
1. Create a model.yml file:
```yaml
$schema: https://azuremlschemas.azureedge.net/latest/model.schema.json
name: qwen-vl-image-descriptor
version: 1
description: Qwen2-VL-7B model for image description
path: .
```
2. Register the model:
```bash
az ml model create --file model.yml \
--workspace-name image-descriptor-ws \
--resource-group image-descriptor-rg
```
## Step 6: Deploy as an Online Endpoint
1. Create an endpoint.yml file:
```yaml
$schema: https://azuremlschemas.azureedge.net/latest/managedOnlineEndpoint.schema.json
name: image-descriptor-endpoint
description: Endpoint for image description
auth_mode: key
```
2. Create a deployment.yml file:
```yaml
$schema: https://azuremlschemas.azureedge.net/latest/managedOnlineDeployment.schema.json
name: qwen-vl-deployment
endpoint_name: image-descriptor-endpoint
model: azureml:qwen-vl-image-descriptor:1
environment:
conda_file: environment.yml
image: mcr.microsoft.com/azureml/openmpi4.1.0-cuda11.6-cudnn8-ubuntu20.04:latest
instance_type: Standard_NC6s_v3
instance_count: 1
request_settings:
max_concurrent_requests_per_instance: 1
request_timeout_ms: 120000
```
3. Create the endpoint:
```bash
az ml online-endpoint create --file endpoint.yml \
--workspace-name image-descriptor-ws \
--resource-group image-descriptor-rg
```
4. Create the deployment:
```bash
az ml online-deployment create --file deployment.yml \
--workspace-name image-descriptor-ws \
--resource-group image-descriptor-rg
```
5. Allocate 100% traffic to the deployment:
```bash
az ml online-endpoint update --name image-descriptor-endpoint \
--traffic "qwen-vl-deployment=100" \
--workspace-name image-descriptor-ws \
--resource-group image-descriptor-rg
```
## Step 7: Test the Endpoint
You can test the endpoint using the Azure ML SDK:
```python
import json
import base64
from azure.ai.ml import MLClient
from azure.identity import DefaultAzureCredential
from azure.ai.ml.entities import ManagedOnlineEndpoint
# Get a handle to the workspace
credential = DefaultAzureCredential()
ml_client = MLClient(
credential=credential,
subscription_id="your-subscription-id",
resource_group_name="image-descriptor-rg",
workspace_name="image-descriptor-ws"
)
# Get endpoint
endpoint = ml_client.online_endpoints.get("image-descriptor-endpoint")
# Load and encode the image
with open('data_temp/page_2.png', 'rb') as f:
image_data = f.read()
image_b64 = base64.b64encode(image_data).decode('utf-8')
# Create the request payload
payload = {
'image_data': image_b64
}
# Invoke the endpoint
response = ml_client.online_endpoints.invoke(
endpoint_name="image-descriptor-endpoint",
request_file=json.dumps(payload),
deployment_name="qwen-vl-deployment"
)
# Parse the response
result = json.loads(response)
print(json.dumps(result, indent=2))
```
## Cost Optimization
To optimize costs:
1. Use a smaller compute size if possible
2. Scale to zero instances when not in use
3. Set up autoscaling rules
4. Consider reserved instances for long-term deployments
## Monitoring
Monitor your endpoint using:
1. Azure Monitor
2. Application Insights
3. Azure ML metrics dashboard
4. Set up alerts for anomalies
## Cleanup
To avoid ongoing charges, delete resources when not in use:
```bash
# Delete the endpoint
az ml online-endpoint delete --name image-descriptor-endpoint \
--workspace-name image-descriptor-ws \
--resource-group image-descriptor-rg -y
# Delete compute cluster
az ml compute delete --name gpu-cluster \
--workspace-name image-descriptor-ws \
--resource-group image-descriptor-rg -y
# Delete workspace (optional)
az ml workspace delete --name image-descriptor-ws \
--resource-group image-descriptor-rg -y
# Delete resource group (optional)
az group delete --name image-descriptor-rg -y
``` |