cursor_slides_internvl2 / app_internvl2.py
mknolan's picture
Upload InternVL2 implementation
45a88d3 verified
raw
history blame
13.6 kB
import gradio as gr
from PIL import Image
import os
import time
import numpy as np
import torch
import warnings
import stat
import subprocess
import sys
import asyncio
import nest_asyncio
# Apply nest_asyncio to allow nested event loops
nest_asyncio.apply()
# Set environment variables
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# Print system information
print(f"Python version: {sys.version}")
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available via PyTorch: {torch.cuda.is_available()}")
print(f"CUDA version via PyTorch: {torch.version.cuda if torch.cuda.is_available() else 'Not available'}")
# Try to run nvidia-smi
def run_nvidia_smi():
try:
result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode == 0:
print("nvidia-smi output:")
print(result.stdout)
return True
else:
print("nvidia-smi error:")
print(result.stderr)
return False
except Exception as e:
print(f"Error running nvidia-smi: {str(e)}")
return False
# Run nvidia-smi
nvidia_smi_available = run_nvidia_smi()
print(f"nvidia-smi available: {nvidia_smi_available}")
# Show CUDA devices
if torch.cuda.is_available():
print(f"CUDA device count: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
print(f"CUDA Device {i}: {torch.cuda.get_device_name(i)}")
print(f"Current CUDA device: {torch.cuda.current_device()}")
# Ensure all cache directories exist with proper permissions
def setup_cache_directories():
# Gradio cache directory
cache_dir = os.path.join(os.getcwd(), "gradio_cached_examples")
os.makedirs(cache_dir, exist_ok=True)
# HuggingFace cache directories
hf_cache = os.path.join(os.getcwd(), ".cache", "huggingface")
transformers_cache = os.path.join(hf_cache, "transformers")
os.makedirs(hf_cache, exist_ok=True)
os.makedirs(transformers_cache, exist_ok=True)
# Set permissions
try:
for directory in [cache_dir, hf_cache, transformers_cache]:
if os.path.exists(directory):
os.chmod(directory, stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) # 0o777
print(f"Set permissions for {directory}")
except Exception as e:
print(f"Warning: Could not set permissions: {str(e)}")
return cache_dir
# Set up cache directories
cache_dir = setup_cache_directories()
# Suppress specific warnings that might be caused by package version mismatches
warnings.filterwarnings("ignore", message=".*The 'nopython' keyword.*")
warnings.filterwarnings("ignore", message=".*Torch is not compiled with CUDA enabled.*")
warnings.filterwarnings("ignore", category=UserWarning)
# Check for actual GPU availability
def check_gpu_availability():
"""Check if GPU is actually available and working"""
print("Checking GPU availability...")
if not torch.cuda.is_available():
print("CUDA is not available in PyTorch")
return False
try:
# Try to initialize CUDA and run a simple operation
print("Attempting to create a tensor on CUDA...")
x = torch.rand(10, device="cuda")
y = x + x
print("Successfully created and operated on CUDA tensor")
return True
except Exception as e:
print(f"GPU initialization failed: {str(e)}")
return False
# Global variables
internvl2_pipeline = None
MODEL_LOADED = False
USE_GPU = check_gpu_availability()
if USE_GPU:
print("GPU is available and working properly")
else:
print("WARNING: GPU is not available or not working properly. This application requires GPU acceleration.")
# Check if lmdeploy is available and try to import
try:
from lmdeploy import pipeline, TurbomindEngineConfig
LMDEPLOY_AVAILABLE = True
print("Successfully imported lmdeploy")
except ImportError as e:
LMDEPLOY_AVAILABLE = False
print(f"lmdeploy import failed: {str(e)}. Will use a placeholder for demos.")
# Model configuration
MODEL_ID = "OpenGVLab/InternVL2-40B-AWQ" # 4-bit quantized model
def load_internvl2_model():
"""Load the InternVL2 model using lmdeploy"""
global internvl2_pipeline, MODEL_LOADED
# If already loaded, return
if internvl2_pipeline is not None:
return True
# If lmdeploy is not available, we'll use a demo placeholder
if not LMDEPLOY_AVAILABLE:
print("lmdeploy not available. Using demo placeholder.")
MODEL_LOADED = False
return False
# Check if GPU is available
if not USE_GPU:
print("Cannot load InternVL2 model without GPU acceleration.")
MODEL_LOADED = False
return False
print("Loading InternVL2 model...")
try:
# Configure for AWQ quantized model
backend_config = TurbomindEngineConfig(model_format='awq')
# Create pipeline with non-streaming mode to avoid asyncio conflicts
internvl2_pipeline = pipeline(
MODEL_ID,
backend_config=backend_config,
log_level='INFO',
model_name_or_path=None,
backend_name="turbomind",
stream=False # Important: disable streaming to avoid asyncio issues
)
print("InternVL2 model loaded successfully!")
MODEL_LOADED = True
return True
except Exception as e:
print(f"Error loading InternVL2 model: {str(e)}")
if "CUDA out of memory" in str(e):
print("Not enough GPU memory for the model")
elif "Found no NVIDIA driver" in str(e):
print("NVIDIA GPU driver not found or not properly configured")
MODEL_LOADED = False
return False
def analyze_image(image, prompt):
"""Analyze the image using InternVL2 model"""
try:
start_time = time.time()
# Skip model loading if lmdeploy is not available
if not LMDEPLOY_AVAILABLE:
return ("This is a demo placeholder. The actual model couldn't be loaded because lmdeploy "
"is not properly installed. Check your installation and dependencies.")
# Check for GPU
if not USE_GPU:
return ("ERROR: This application requires a GPU to run InternVL2. "
"The NVIDIA driver was not detected on this system. "
"Please make sure this Space is using a GPU-enabled instance and that the GPU is correctly initialized.")
# Make sure the model is loaded
if not load_internvl2_model():
return "Couldn't load InternVL2 model. See logs for details."
# Convert numpy array to PIL Image
if isinstance(image, np.ndarray):
image_pil = Image.fromarray(image).convert('RGB')
else:
# If somehow it's already a PIL Image
image_pil = image.convert('RGB')
# Run inference with the model, handling event loop manually
loop = asyncio.get_event_loop()
if loop.is_running():
# If we're in a running event loop (like Gradio's),
# we need to use run_in_executor for blocking operations
print("Using threaded execution for model inference")
# Define a function that will run in a separate thread
def run_inference():
return internvl2_pipeline((prompt, image_pil))
# Run the inference in a thread pool executor
response = loop.run_in_executor(None, run_inference)
# Wait for the result
if hasattr(response, "result"):
response = response.result()
else:
# Standard synchronous execution
print("Using standard execution for model inference")
response = internvl2_pipeline((prompt, image_pil))
# Get the response text
result = response.text if hasattr(response, "text") else str(response)
elapsed_time = time.time() - start_time
return result
except Exception as e:
print(f"Error in image analysis: {str(e)}")
# Try to clean up memory in case of error
if USE_GPU:
torch.cuda.empty_cache()
return f"Error in image analysis: {str(e)}"
def process_image(image, analysis_type="general"):
"""Process the image and return the analysis"""
if image is None:
return "Please upload an image."
# Define prompt based on analysis type
if analysis_type == "general":
prompt = "Describe this image in detail."
elif analysis_type == "text":
prompt = "What text can you see in this image? Please transcribe it accurately."
elif analysis_type == "chart":
prompt = "Analyze any charts, graphs or diagrams in this image in detail, including trends, data points, and conclusions."
elif analysis_type == "people":
prompt = "Describe the people in this image - their appearance, actions, and expressions."
elif analysis_type == "technical":
prompt = "Provide a technical analysis of this image, including object identification, spatial relationships, and any technical elements present."
else:
prompt = "Describe this image in detail."
start_time = time.time()
# Get analysis from the model
analysis = analyze_image(image, prompt)
elapsed_time = time.time() - start_time
return f"{analysis}\n\nAnalysis completed in {elapsed_time:.2f} seconds."
# Define the Gradio interface
def create_interface():
with gr.Blocks(title="Image Analysis with InternVL2") as demo:
gr.Markdown("# Image Analysis with InternVL2-40B")
# System diagnostics
system_info = f"""
## System Diagnostics:
- PyTorch Version: {torch.__version__}
- CUDA Available: {torch.cuda.is_available()}
- GPU Working: {USE_GPU}
- nvidia-smi Available: {nvidia_smi_available}
"""
gr.Markdown(system_info)
gr.Markdown("Upload an image to analyze it using the InternVL2-40B model.")
# Show warnings based on system status
if not LMDEPLOY_AVAILABLE:
gr.Markdown("⚠️ **WARNING**: lmdeploy is not properly installed. This demo will not function correctly.", elem_classes=["warning-message"])
if not USE_GPU:
gr.Markdown("🚫 **ERROR**: NVIDIA GPU not detected. This application requires GPU acceleration to run InternVL2 model.", elem_classes=["error-message"])
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="Upload Image")
analysis_type = gr.Radio(
["general", "text", "chart", "people", "technical"],
label="Analysis Type",
value="general"
)
submit_btn = gr.Button("Analyze Image")
# Disable button if GPU is not available
if not USE_GPU:
submit_btn.interactive = False
with gr.Column(scale=2):
output_text = gr.Textbox(label="Analysis Result", lines=20)
if not USE_GPU:
output_text.value = f"""ERROR: NVIDIA GPU driver not detected. This application requires GPU acceleration to run the InternVL2 model.
Diagnostics:
- PyTorch Version: {torch.__version__}
- CUDA Available via PyTorch: {torch.cuda.is_available()}
- nvidia-smi Available: {nvidia_smi_available}
- GPU Working: {USE_GPU}
Please ensure this Space is using a GPU-enabled instance and that the GPU is correctly initialized."""
submit_btn.click(
fn=process_image,
inputs=[input_image, analysis_type],
outputs=output_text
)
gr.Markdown("""
## Analysis Types
- **General**: General description of the image
- **Text**: Focus on identifying and transcribing text in the image
- **Chart**: Detailed analysis of charts, graphs, and diagrams
- **People**: Description of people, their appearance and actions
- **Technical**: Technical analysis identifying objects and spatial relationships
""")
# Hardware requirements notice
gr.Markdown("""
## System Requirements
This application requires:
- NVIDIA GPU with CUDA support
- At least 16GB of GPU memory recommended
- GPU drivers properly installed and configured
If you're running this on Hugging Face Spaces, make sure to select a GPU-enabled hardware type.
""")
# Examples
try:
gr.Examples(
examples=[
["data_temp/page_2.png", "general"],
["data_temp/page_2.png", "text"],
["data_temp/page_2.png", "chart"]
],
inputs=[input_image, analysis_type],
outputs=output_text,
fn=process_image,
cache_examples=True
)
except Exception as e:
print(f"Warning: Could not load examples: {str(e)}")
return demo
# Main function
if __name__ == "__main__":
# Create the Gradio interface
demo = create_interface()
# Launch the interface (removed incompatible parameters)
demo.launch(share=False, server_name="0.0.0.0")