cursor_slides_internvl2 / app_internvl2.py
mknolan's picture
Upload InternVL2 implementation
e59dc66 verified
raw
history blame
5.6 kB
import gradio as gr
from PIL import Image
import os
import time
import numpy as np
import torch
import math
# Import lmdeploy for InternVL2 model
from lmdeploy import pipeline, TurbomindEngineConfig
from lmdeploy.vl import load_image
# Set environment variables
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# Model configuration
MODEL_ID = "OpenGVLab/InternVL2-40B-AWQ" # 4-bit quantized model
USE_GPU = torch.cuda.is_available()
# Global variables for model
internvl2_pipeline = None
def load_internvl2_model():
"""Load the InternVL2 model using lmdeploy"""
global internvl2_pipeline
# If already loaded, return
if internvl2_pipeline is not None:
return True
print("Loading InternVL2 model...")
try:
# Configure for AWQ quantized model
backend_config = TurbomindEngineConfig(model_format='awq')
# Create pipeline
internvl2_pipeline = pipeline(
MODEL_ID,
backend_config=backend_config,
log_level='INFO'
)
print("InternVL2 model loaded successfully!")
return True
except Exception as e:
print(f"Error loading InternVL2 model: {str(e)}")
if "CUDA out of memory" in str(e):
print("Not enough GPU memory for the model")
return False
def analyze_image(image, prompt):
"""Analyze the image using InternVL2 model"""
try:
start_time = time.time()
# Make sure the model is loaded
if not load_internvl2_model():
return "Couldn't load InternVL2 model."
# Convert numpy array to PIL Image
if isinstance(image, np.ndarray):
image_pil = Image.fromarray(image).convert('RGB')
else:
# If somehow it's already a PIL Image
image_pil = image.convert('RGB')
# Run inference with the model
response = internvl2_pipeline((prompt, image_pil))
# Get the response text
result = response.text
elapsed_time = time.time() - start_time
return result
except Exception as e:
print(f"Error in image analysis: {str(e)}")
# Try to clean up memory in case of error
if USE_GPU:
torch.cuda.empty_cache()
return f"Error in image analysis: {str(e)}"
def process_image(image, analysis_type="general"):
"""Process the image and return the analysis"""
if image is None:
return "Please upload an image."
# Define prompt based on analysis type
if analysis_type == "general":
prompt = "Describe this image in detail."
elif analysis_type == "text":
prompt = "What text can you see in this image? Please transcribe it accurately."
elif analysis_type == "chart":
prompt = "Analyze any charts, graphs or diagrams in this image in detail, including trends, data points, and conclusions."
elif analysis_type == "people":
prompt = "Describe the people in this image - their appearance, actions, and expressions."
elif analysis_type == "technical":
prompt = "Provide a technical analysis of this image, including object identification, spatial relationships, and any technical elements present."
else:
prompt = "Describe this image in detail."
start_time = time.time()
# Get analysis from the model
analysis = analyze_image(image, prompt)
elapsed_time = time.time() - start_time
return f"{analysis}\n\nAnalysis completed in {elapsed_time:.2f} seconds."
# Define the Gradio interface
def create_interface():
with gr.Blocks(title="Image Analysis with InternVL2") as demo:
gr.Markdown("# Image Analysis with InternVL2-40B")
gr.Markdown("Upload an image to analyze it using the InternVL2-40B model.")
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="Upload Image")
analysis_type = gr.Radio(
["general", "text", "chart", "people", "technical"],
label="Analysis Type",
value="general"
)
submit_btn = gr.Button("Analyze Image")
with gr.Column(scale=2):
output_text = gr.Textbox(label="Analysis Result", lines=20)
submit_btn.click(
fn=process_image,
inputs=[input_image, analysis_type],
outputs=output_text
)
gr.Markdown("""
## Analysis Types
- **General**: General description of the image
- **Text**: Focus on identifying and transcribing text in the image
- **Chart**: Detailed analysis of charts, graphs, and diagrams
- **People**: Description of people, their appearance and actions
- **Technical**: Technical analysis identifying objects and spatial relationships
""")
# Examples
gr.Examples(
examples=[
["data_temp/page_2.png", "general"],
["data_temp/page_2.png", "text"],
["data_temp/page_2.png", "chart"]
],
inputs=[input_image, analysis_type],
outputs=output_text,
fn=process_image,
cache_examples=True,
)
return demo
# Main function
if __name__ == "__main__":
# Create the Gradio interface
demo = create_interface()
# Launch the interface
demo.launch(share=False)