Upload InternVL2 implementation
Browse files- Dockerfile +18 -0
- app_internvl2.py +57 -1
Dockerfile
CHANGED
@@ -6,6 +6,8 @@ ENV PYTHONUNBUFFERED=1
|
|
6 |
ENV HF_HOME=/app/.cache/huggingface
|
7 |
ENV TRANSFORMERS_CACHE=/app/.cache/huggingface/transformers
|
8 |
ENV MPLCONFIGDIR=/tmp/matplotlib
|
|
|
|
|
9 |
|
10 |
# Create necessary directories with proper permissions
|
11 |
RUN mkdir -p /app/.cache/huggingface/transformers && \
|
@@ -23,11 +25,24 @@ RUN apt-get update && apt-get install -y --no-install-recommends \
|
|
23 |
python3-pip \
|
24 |
python3-dev \
|
25 |
python3-setuptools \
|
|
|
26 |
&& rm -rf /var/lib/apt/lists/*
|
27 |
|
28 |
# Create a working directory
|
29 |
WORKDIR /app
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Copy requirements file
|
32 |
COPY requirements.txt .
|
33 |
|
@@ -63,5 +78,8 @@ RUN mkdir -p gradio_cached_examples && \
|
|
63 |
# Make port 7860 available for the app
|
64 |
EXPOSE 7860
|
65 |
|
|
|
|
|
|
|
66 |
# Start the application
|
67 |
CMD ["python3", "app_internvl2.py"]
|
|
|
6 |
ENV HF_HOME=/app/.cache/huggingface
|
7 |
ENV TRANSFORMERS_CACHE=/app/.cache/huggingface/transformers
|
8 |
ENV MPLCONFIGDIR=/tmp/matplotlib
|
9 |
+
# Force PyTorch to use the NCCl backend
|
10 |
+
ENV PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:128
|
11 |
|
12 |
# Create necessary directories with proper permissions
|
13 |
RUN mkdir -p /app/.cache/huggingface/transformers && \
|
|
|
25 |
python3-pip \
|
26 |
python3-dev \
|
27 |
python3-setuptools \
|
28 |
+
nvidia-cuda-toolkit \
|
29 |
&& rm -rf /var/lib/apt/lists/*
|
30 |
|
31 |
# Create a working directory
|
32 |
WORKDIR /app
|
33 |
|
34 |
+
# Add a script to check GPU status at startup
|
35 |
+
RUN echo '#!/bin/bash \n\
|
36 |
+
echo "Checking NVIDIA GPU status..." \n\
|
37 |
+
if ! command -v nvidia-smi &> /dev/null; then \n\
|
38 |
+
echo "WARNING: nvidia-smi command not found. NVIDIA driver might not be installed." \n\
|
39 |
+
else \n\
|
40 |
+
echo "NVIDIA driver found. Running nvidia-smi:" \n\
|
41 |
+
nvidia-smi \n\
|
42 |
+
fi \n\
|
43 |
+
exec "$@"' > /entrypoint.sh && \
|
44 |
+
chmod +x /entrypoint.sh
|
45 |
+
|
46 |
# Copy requirements file
|
47 |
COPY requirements.txt .
|
48 |
|
|
|
78 |
# Make port 7860 available for the app
|
79 |
EXPOSE 7860
|
80 |
|
81 |
+
# Use our entrypoint script to check GPU status before starting the app
|
82 |
+
ENTRYPOINT ["/entrypoint.sh"]
|
83 |
+
|
84 |
# Start the application
|
85 |
CMD ["python3", "app_internvl2.py"]
|
app_internvl2.py
CHANGED
@@ -41,10 +41,31 @@ warnings.filterwarnings("ignore", message=".*The 'nopython' keyword.*")
|
|
41 |
warnings.filterwarnings("ignore", message=".*Torch is not compiled with CUDA enabled.*")
|
42 |
warnings.filterwarnings("ignore", category=UserWarning)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# Global variables
|
45 |
internvl2_pipeline = None
|
46 |
MODEL_LOADED = False
|
47 |
-
USE_GPU =
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
# Check if lmdeploy is available and try to import
|
50 |
try:
|
@@ -71,6 +92,12 @@ def load_internvl2_model():
|
|
71 |
print("lmdeploy not available. Using demo placeholder.")
|
72 |
MODEL_LOADED = False
|
73 |
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
print("Loading InternVL2 model...")
|
76 |
try:
|
@@ -91,6 +118,8 @@ def load_internvl2_model():
|
|
91 |
print(f"Error loading InternVL2 model: {str(e)}")
|
92 |
if "CUDA out of memory" in str(e):
|
93 |
print("Not enough GPU memory for the model")
|
|
|
|
|
94 |
MODEL_LOADED = False
|
95 |
return False
|
96 |
|
@@ -104,6 +133,12 @@ def analyze_image(image, prompt):
|
|
104 |
return ("This is a demo placeholder. The actual model couldn't be loaded because lmdeploy "
|
105 |
"is not properly installed. Check your installation and dependencies.")
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
# Make sure the model is loaded
|
108 |
if not load_internvl2_model():
|
109 |
return "Couldn't load InternVL2 model. See logs for details."
|
@@ -164,9 +199,13 @@ def create_interface():
|
|
164 |
gr.Markdown("# Image Analysis with InternVL2-40B")
|
165 |
gr.Markdown("Upload an image to analyze it using the InternVL2-40B model.")
|
166 |
|
|
|
167 |
if not LMDEPLOY_AVAILABLE:
|
168 |
gr.Markdown("⚠️ **WARNING**: lmdeploy is not properly installed. This demo will not function correctly.", elem_classes=["warning-message"])
|
169 |
|
|
|
|
|
|
|
170 |
with gr.Row():
|
171 |
with gr.Column(scale=1):
|
172 |
input_image = gr.Image(type="pil", label="Upload Image")
|
@@ -176,9 +215,15 @@ def create_interface():
|
|
176 |
value="general"
|
177 |
)
|
178 |
submit_btn = gr.Button("Analyze Image")
|
|
|
|
|
|
|
|
|
179 |
|
180 |
with gr.Column(scale=2):
|
181 |
output_text = gr.Textbox(label="Analysis Result", lines=20)
|
|
|
|
|
182 |
|
183 |
submit_btn.click(
|
184 |
fn=process_image,
|
@@ -195,6 +240,17 @@ def create_interface():
|
|
195 |
- **Technical**: Technical analysis identifying objects and spatial relationships
|
196 |
""")
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
# Examples
|
199 |
try:
|
200 |
gr.Examples(
|
|
|
41 |
warnings.filterwarnings("ignore", message=".*Torch is not compiled with CUDA enabled.*")
|
42 |
warnings.filterwarnings("ignore", category=UserWarning)
|
43 |
|
44 |
+
# Check for actual GPU availability
|
45 |
+
def check_gpu_availability():
|
46 |
+
"""Check if GPU is actually available and working"""
|
47 |
+
if not torch.cuda.is_available():
|
48 |
+
print("CUDA is not available in PyTorch")
|
49 |
+
return False
|
50 |
+
|
51 |
+
try:
|
52 |
+
# Try to initialize CUDA and run a simple operation
|
53 |
+
x = torch.rand(10, device="cuda")
|
54 |
+
y = x + x
|
55 |
+
return True
|
56 |
+
except Exception as e:
|
57 |
+
print(f"GPU initialization failed: {str(e)}")
|
58 |
+
return False
|
59 |
+
|
60 |
# Global variables
|
61 |
internvl2_pipeline = None
|
62 |
MODEL_LOADED = False
|
63 |
+
USE_GPU = check_gpu_availability()
|
64 |
+
|
65 |
+
if USE_GPU:
|
66 |
+
print("GPU is available and working properly")
|
67 |
+
else:
|
68 |
+
print("WARNING: GPU is not available or not working properly. This application requires GPU acceleration.")
|
69 |
|
70 |
# Check if lmdeploy is available and try to import
|
71 |
try:
|
|
|
92 |
print("lmdeploy not available. Using demo placeholder.")
|
93 |
MODEL_LOADED = False
|
94 |
return False
|
95 |
+
|
96 |
+
# Check if GPU is available
|
97 |
+
if not USE_GPU:
|
98 |
+
print("Cannot load InternVL2 model without GPU acceleration.")
|
99 |
+
MODEL_LOADED = False
|
100 |
+
return False
|
101 |
|
102 |
print("Loading InternVL2 model...")
|
103 |
try:
|
|
|
118 |
print(f"Error loading InternVL2 model: {str(e)}")
|
119 |
if "CUDA out of memory" in str(e):
|
120 |
print("Not enough GPU memory for the model")
|
121 |
+
elif "Found no NVIDIA driver" in str(e):
|
122 |
+
print("NVIDIA GPU driver not found or not properly configured")
|
123 |
MODEL_LOADED = False
|
124 |
return False
|
125 |
|
|
|
133 |
return ("This is a demo placeholder. The actual model couldn't be loaded because lmdeploy "
|
134 |
"is not properly installed. Check your installation and dependencies.")
|
135 |
|
136 |
+
# Check for GPU
|
137 |
+
if not USE_GPU:
|
138 |
+
return ("ERROR: This application requires a GPU to run InternVL2. "
|
139 |
+
"The NVIDIA driver was not detected on this system. "
|
140 |
+
"Please make sure this Space is using a GPU-enabled instance.")
|
141 |
+
|
142 |
# Make sure the model is loaded
|
143 |
if not load_internvl2_model():
|
144 |
return "Couldn't load InternVL2 model. See logs for details."
|
|
|
199 |
gr.Markdown("# Image Analysis with InternVL2-40B")
|
200 |
gr.Markdown("Upload an image to analyze it using the InternVL2-40B model.")
|
201 |
|
202 |
+
# Show warnings based on system status
|
203 |
if not LMDEPLOY_AVAILABLE:
|
204 |
gr.Markdown("⚠️ **WARNING**: lmdeploy is not properly installed. This demo will not function correctly.", elem_classes=["warning-message"])
|
205 |
|
206 |
+
if not USE_GPU:
|
207 |
+
gr.Markdown("🚫 **ERROR**: NVIDIA GPU not detected. This application requires GPU acceleration to run InternVL2 model.", elem_classes=["error-message"])
|
208 |
+
|
209 |
with gr.Row():
|
210 |
with gr.Column(scale=1):
|
211 |
input_image = gr.Image(type="pil", label="Upload Image")
|
|
|
215 |
value="general"
|
216 |
)
|
217 |
submit_btn = gr.Button("Analyze Image")
|
218 |
+
|
219 |
+
# Disable button if GPU is not available
|
220 |
+
if not USE_GPU:
|
221 |
+
submit_btn.interactive = False
|
222 |
|
223 |
with gr.Column(scale=2):
|
224 |
output_text = gr.Textbox(label="Analysis Result", lines=20)
|
225 |
+
if not USE_GPU:
|
226 |
+
output_text.value = "ERROR: NVIDIA GPU driver not detected. This application requires GPU acceleration to run the InternVL2 model. Please ensure this Space is using a GPU-enabled instance."
|
227 |
|
228 |
submit_btn.click(
|
229 |
fn=process_image,
|
|
|
240 |
- **Technical**: Technical analysis identifying objects and spatial relationships
|
241 |
""")
|
242 |
|
243 |
+
# Hardware requirements notice
|
244 |
+
gr.Markdown("""
|
245 |
+
## System Requirements
|
246 |
+
This application requires:
|
247 |
+
- NVIDIA GPU with CUDA support
|
248 |
+
- At least 16GB of GPU memory recommended
|
249 |
+
- GPU drivers properly installed and configured
|
250 |
+
|
251 |
+
If you're running this on Hugging Face Spaces, make sure to select a GPU-enabled hardware type.
|
252 |
+
""")
|
253 |
+
|
254 |
# Examples
|
255 |
try:
|
256 |
gr.Examples(
|