Upload InternVL2 implementation
Browse files- app_internvl2.py +58 -68
app_internvl2.py
CHANGED
@@ -133,46 +133,48 @@ def load_model():
|
|
133 |
print("Cannot load models without GPU acceleration.")
|
134 |
return False
|
135 |
|
136 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
if HAS_LMDEPLOY:
|
138 |
try:
|
139 |
print("Attempting to load InternVL2 model...")
|
140 |
-
# Configure for AWQ quantized model
|
141 |
backend_config = TurbomindEngineConfig(
|
142 |
model_format='awq',
|
143 |
-
session_len=
|
|
|
|
|
|
|
144 |
)
|
145 |
|
146 |
-
# Set to non-streaming mode
|
147 |
internvl2_model = pipeline(
|
148 |
"OpenGVLab/InternVL2-40B-AWQ",
|
149 |
backend_config=backend_config,
|
150 |
model_name_or_path=None,
|
151 |
backend_name="turbomind",
|
152 |
stream=False, # Disable streaming
|
|
|
153 |
)
|
154 |
|
155 |
print("InternVL2 model loaded successfully!")
|
156 |
-
return True
|
157 |
except Exception as e:
|
158 |
print(f"Failed to load InternVL2: {str(e)}")
|
159 |
internvl2_model = None
|
160 |
|
161 |
-
#
|
162 |
-
|
163 |
-
try:
|
164 |
-
print("Falling back to BLIP model...")
|
165 |
-
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
166 |
-
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda")
|
167 |
-
print("BLIP model loaded successfully!")
|
168 |
-
return True
|
169 |
-
except Exception as e:
|
170 |
-
print(f"Failed to load BLIP: {str(e)}")
|
171 |
-
blip_processor = None
|
172 |
-
blip_model = None
|
173 |
-
|
174 |
-
print("Could not load any model")
|
175 |
-
return False
|
176 |
|
177 |
# Try to load a model at startup
|
178 |
MODEL_LOADED = load_model()
|
@@ -192,15 +194,44 @@ def analyze_image(image, prompt):
|
|
192 |
pil_image = Image.fromarray(image).convert('RGB')
|
193 |
else:
|
194 |
pil_image = image.convert('RGB')
|
195 |
-
|
196 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
if internvl2_model is not None:
|
198 |
try:
|
199 |
print("Running inference with InternVL2...")
|
200 |
print(f"Using prompt: '{prompt}'")
|
201 |
|
202 |
-
#
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
# Print debug info about the response
|
206 |
print(f"Response type: {type(response)}")
|
@@ -224,54 +255,13 @@ def analyze_image(image, prompt):
|
|
224 |
# Check if we got an empty result
|
225 |
if not result or result.strip() == "":
|
226 |
print("WARNING: Received empty response from InternVL2")
|
227 |
-
|
228 |
-
print("Trying alternative prompt...")
|
229 |
-
alt_prompt = "This is an image. Describe what you see in detail."
|
230 |
-
response2 = internvl2_model((alt_prompt, pil_image))
|
231 |
-
|
232 |
-
if hasattr(response2, "text"):
|
233 |
-
result = response2.text
|
234 |
-
elif hasattr(response2, "response"):
|
235 |
-
result = response2.response
|
236 |
-
elif hasattr(response2, "generated_text"):
|
237 |
-
result = response2.generated_text
|
238 |
-
else:
|
239 |
-
result = str(response2)
|
240 |
-
|
241 |
-
if not result or result.strip() == "":
|
242 |
-
print("Alternative prompt also gave empty result")
|
243 |
-
# Fall through to BLIP fallback
|
244 |
-
raise ValueError("Empty response from InternVL2")
|
245 |
-
else:
|
246 |
-
print(f"Alternative prompt worked: '{result}'")
|
247 |
|
248 |
-
|
249 |
-
if result and result.strip() != "":
|
250 |
-
return f"[InternVL2] {result}"
|
251 |
-
else:
|
252 |
-
# Try BLIP instead
|
253 |
-
raise ValueError("Empty response from InternVL2")
|
254 |
|
255 |
except Exception as e:
|
256 |
print(f"Error with InternVL2: {str(e)}")
|
257 |
-
|
258 |
-
|
259 |
-
# If we have BLIP loaded, use it
|
260 |
-
if blip_model is not None and blip_processor is not None:
|
261 |
-
try:
|
262 |
-
print("Running inference with BLIP...")
|
263 |
-
# BLIP doesn't use prompts the same way, simplify
|
264 |
-
inputs = blip_processor(pil_image, return_tensors="pt").to("cuda")
|
265 |
-
out = blip_model.generate(**inputs, max_new_tokens=100)
|
266 |
-
result = blip_processor.decode(out[0], skip_special_tokens=True)
|
267 |
-
|
268 |
-
# Check if BLIP result is empty
|
269 |
-
if not result or result.strip() == "":
|
270 |
-
return "BLIP model returned an empty response. The model may be having issues processing this image."
|
271 |
-
|
272 |
-
return f"[BLIP] {result} (Note: Custom prompts not supported with BLIP fallback model)"
|
273 |
-
except Exception as e:
|
274 |
-
print(f"Error with BLIP: {str(e)}")
|
275 |
|
276 |
return "No model was able to analyze the image. See logs for details."
|
277 |
|
|
|
133 |
print("Cannot load models without GPU acceleration.")
|
134 |
return False
|
135 |
|
136 |
+
# Try to load BLIP first since it's more reliable
|
137 |
+
if HAS_BLIP:
|
138 |
+
try:
|
139 |
+
print("Loading BLIP model...")
|
140 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
141 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda")
|
142 |
+
print("BLIP model loaded successfully!")
|
143 |
+
except Exception as e:
|
144 |
+
print(f"Failed to load BLIP: {str(e)}")
|
145 |
+
blip_processor = None
|
146 |
+
blip_model = None
|
147 |
+
|
148 |
+
# Then try InternVL2 if lmdeploy is available
|
149 |
if HAS_LMDEPLOY:
|
150 |
try:
|
151 |
print("Attempting to load InternVL2 model...")
|
152 |
+
# Configure for AWQ quantized model with larger context
|
153 |
backend_config = TurbomindEngineConfig(
|
154 |
model_format='awq',
|
155 |
+
session_len=4096, # Increased session length
|
156 |
+
max_batch_size=1, # Limit batch size to reduce memory usage
|
157 |
+
cache_max_entry_count=0.3, # Adjust cache to optimize for single requests
|
158 |
+
tp=1 # Set tensor parallelism to 1 (use single GPU)
|
159 |
)
|
160 |
|
161 |
+
# Set to non-streaming mode with explicit token limits
|
162 |
internvl2_model = pipeline(
|
163 |
"OpenGVLab/InternVL2-40B-AWQ",
|
164 |
backend_config=backend_config,
|
165 |
model_name_or_path=None,
|
166 |
backend_name="turbomind",
|
167 |
stream=False, # Disable streaming
|
168 |
+
max_new_tokens=512, # Explicitly set max new tokens
|
169 |
)
|
170 |
|
171 |
print("InternVL2 model loaded successfully!")
|
|
|
172 |
except Exception as e:
|
173 |
print(f"Failed to load InternVL2: {str(e)}")
|
174 |
internvl2_model = None
|
175 |
|
176 |
+
# Return True if at least one model is loaded
|
177 |
+
return (blip_model is not None and blip_processor is not None) or (internvl2_model is not None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
# Try to load a model at startup
|
180 |
MODEL_LOADED = load_model()
|
|
|
194 |
pil_image = Image.fromarray(image).convert('RGB')
|
195 |
else:
|
196 |
pil_image = image.convert('RGB')
|
197 |
+
|
198 |
+
# Try BLIP first since it's more reliable
|
199 |
+
if blip_model is not None and blip_processor is not None:
|
200 |
+
try:
|
201 |
+
print("Running inference with BLIP...")
|
202 |
+
# BLIP doesn't use prompts the same way, simplify
|
203 |
+
inputs = blip_processor(pil_image, return_tensors="pt").to("cuda")
|
204 |
+
out = blip_model.generate(**inputs, max_length=80, min_length=10, num_beams=5)
|
205 |
+
result = blip_processor.decode(out[0], skip_special_tokens=True)
|
206 |
+
|
207 |
+
# Check if BLIP result is empty
|
208 |
+
if not result or result.strip() == "":
|
209 |
+
print("BLIP model returned an empty response")
|
210 |
+
# Only fall through to InternVL2 if BLIP fails
|
211 |
+
raise ValueError("Empty response from BLIP")
|
212 |
+
|
213 |
+
return f"[BLIP] {result}"
|
214 |
+
except Exception as e:
|
215 |
+
print(f"Error with BLIP: {str(e)}")
|
216 |
+
# If BLIP fails, try InternVL2 if available
|
217 |
+
|
218 |
+
# Try InternVL2 if available
|
219 |
if internvl2_model is not None:
|
220 |
try:
|
221 |
print("Running inference with InternVL2...")
|
222 |
print(f"Using prompt: '{prompt}'")
|
223 |
|
224 |
+
# Create a specifically formatted prompt for InternVL2
|
225 |
+
formatted_prompt = f"<image>\n{prompt}"
|
226 |
+
print(f"Formatted prompt: '{formatted_prompt}'")
|
227 |
+
|
228 |
+
# Run the model with more explicit parameters
|
229 |
+
response = internvl2_model(
|
230 |
+
(formatted_prompt, pil_image),
|
231 |
+
max_new_tokens=512, # Set higher token limit
|
232 |
+
temperature=0.7, # Add temperature for better generation
|
233 |
+
top_p=0.9 # Add top_p for better generation
|
234 |
+
)
|
235 |
|
236 |
# Print debug info about the response
|
237 |
print(f"Response type: {type(response)}")
|
|
|
255 |
# Check if we got an empty result
|
256 |
if not result or result.strip() == "":
|
257 |
print("WARNING: Received empty response from InternVL2")
|
258 |
+
return "InternVL2 failed to analyze the image (empty response). This may be due to token limits."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
|
260 |
+
return f"[InternVL2] {result}"
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
except Exception as e:
|
263 |
print(f"Error with InternVL2: {str(e)}")
|
264 |
+
return f"Error with InternVL2: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
return "No model was able to analyze the image. See logs for details."
|
267 |
|