Upload simple_internvit_test.py with huggingface_hub
Browse files- simple_internvit_test.py +109 -0
simple_internvit_test.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import traceback
|
5 |
+
import gradio as gr
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import AutoModel, CLIPImageProcessor
|
8 |
+
|
9 |
+
print("=" * 50)
|
10 |
+
print("SIMPLE INTERNVIT-6B MODEL LOADING TEST")
|
11 |
+
print("=" * 50)
|
12 |
+
|
13 |
+
# System information
|
14 |
+
print(f"Python version: {sys.version}")
|
15 |
+
print(f"PyTorch version: {torch.__version__}")
|
16 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
17 |
+
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
print(f"CUDA version: {torch.version.cuda}")
|
20 |
+
print(f"GPU count: {torch.cuda.device_count()}")
|
21 |
+
for i in range(torch.cuda.device_count()):
|
22 |
+
print(f"GPU {i}: {torch.cuda.get_device_name(i)}")
|
23 |
+
|
24 |
+
# Memory info
|
25 |
+
print(f"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
|
26 |
+
print(f"Allocated GPU memory: {torch.cuda.memory_allocated() / 1e9:.2f} GB")
|
27 |
+
print(f"Reserved GPU memory: {torch.cuda.memory_reserved() / 1e9:.2f} GB")
|
28 |
+
else:
|
29 |
+
print("CUDA is not available. This is a critical issue for model loading.")
|
30 |
+
|
31 |
+
# Create a function to load and test the model
|
32 |
+
def load_and_test_model():
|
33 |
+
try:
|
34 |
+
print("\nLoading model with bfloat16 precision and low_cpu_mem_usage=True...")
|
35 |
+
model = AutoModel.from_pretrained(
|
36 |
+
'OpenGVLab/InternViT-6B-224px',
|
37 |
+
torch_dtype=torch.bfloat16,
|
38 |
+
low_cpu_mem_usage=True,
|
39 |
+
trust_remote_code=True)
|
40 |
+
|
41 |
+
if torch.cuda.is_available():
|
42 |
+
print("Moving model to CUDA...")
|
43 |
+
model = model.cuda()
|
44 |
+
|
45 |
+
model.eval()
|
46 |
+
print("✓ Model loaded successfully!")
|
47 |
+
|
48 |
+
# Now try to process a test image
|
49 |
+
print("\nLoading image processor...")
|
50 |
+
image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-224px')
|
51 |
+
print("✓ Image processor loaded successfully!")
|
52 |
+
|
53 |
+
# Create a simple test image
|
54 |
+
print("\nCreating test image...")
|
55 |
+
test_image = Image.new('RGB', (224, 224), color='red')
|
56 |
+
|
57 |
+
# Process the test image
|
58 |
+
print("Processing test image...")
|
59 |
+
pixel_values = image_processor(images=test_image, return_tensors='pt').pixel_values
|
60 |
+
if torch.cuda.is_available():
|
61 |
+
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
62 |
+
|
63 |
+
# Get model parameters
|
64 |
+
params = sum(p.numel() for p in model.parameters())
|
65 |
+
print(f"Model parameters: {params:,}")
|
66 |
+
|
67 |
+
# Forward pass
|
68 |
+
print("Running forward pass...")
|
69 |
+
with torch.no_grad():
|
70 |
+
outputs = model(pixel_values)
|
71 |
+
|
72 |
+
print("✓ Forward pass successful!")
|
73 |
+
print(f"Output shape: {outputs.last_hidden_state.shape}")
|
74 |
+
|
75 |
+
return f"SUCCESS: Model loaded and test passed!\nParameters: {params:,}\nOutput shape: {outputs.last_hidden_state.shape}"
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
print(f"\n❌ ERROR: {str(e)}")
|
79 |
+
traceback.print_exc()
|
80 |
+
return f"FAILED: Error loading model or processing image\nError: {str(e)}"
|
81 |
+
|
82 |
+
# Create a simple Gradio interface
|
83 |
+
def create_interface():
|
84 |
+
with gr.Blocks(title="InternViT-6B Test") as demo:
|
85 |
+
gr.Markdown("# InternViT-6B Model Loading Test")
|
86 |
+
|
87 |
+
with gr.Row():
|
88 |
+
test_btn = gr.Button("Test Model Loading")
|
89 |
+
output = gr.Textbox(label="Test Results", lines=10)
|
90 |
+
|
91 |
+
test_btn.click(fn=load_and_test_model, inputs=[], outputs=output)
|
92 |
+
|
93 |
+
return demo
|
94 |
+
|
95 |
+
# Main function
|
96 |
+
if __name__ == "__main__":
|
97 |
+
# Print environment variables
|
98 |
+
print("\nEnvironment variables:")
|
99 |
+
relevant_vars = ["CUDA_VISIBLE_DEVICES", "NVIDIA_VISIBLE_DEVICES",
|
100 |
+
"TRANSFORMERS_CACHE", "HF_HOME", "PYTORCH_CUDA_ALLOC_CONF"]
|
101 |
+
for var in relevant_vars:
|
102 |
+
print(f"{var}: {os.environ.get(var, 'Not set')}")
|
103 |
+
|
104 |
+
# Set environment variable for better GPU memory management
|
105 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
106 |
+
|
107 |
+
# Create and launch the interface
|
108 |
+
demo = create_interface()
|
109 |
+
demo.launch(share=False, server_name="0.0.0.0")
|