|
import torch |
|
import os |
|
import sys |
|
import traceback |
|
import gradio as gr |
|
from PIL import Image |
|
from transformers import AutoModel, CLIPImageProcessor |
|
|
|
print("=" * 50) |
|
print("INTERNVIT-6B MODEL LOADING TEST (NO FLASH-ATTN)") |
|
print("=" * 50) |
|
|
|
|
|
print(f"Python version: {sys.version}") |
|
print(f"PyTorch version: {torch.__version__}") |
|
print(f"CUDA available: {torch.cuda.is_available()}") |
|
|
|
if torch.cuda.is_available(): |
|
print(f"CUDA version: {torch.version.cuda}") |
|
print(f"GPU count: {torch.cuda.device_count()}") |
|
for i in range(torch.cuda.device_count()): |
|
print(f"GPU {i}: {torch.cuda.get_device_name(i)}") |
|
|
|
|
|
print(f"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB") |
|
print(f"Allocated GPU memory: {torch.cuda.memory_allocated() / 1e9:.2f} GB") |
|
print(f"Reserved GPU memory: {torch.cuda.memory_reserved() / 1e9:.2f} GB") |
|
else: |
|
print("CUDA is not available. This is a critical issue for model loading.") |
|
|
|
|
|
def load_and_test_model(): |
|
try: |
|
|
|
import sys |
|
import types |
|
|
|
|
|
flash_attn_module = types.ModuleType("flash_attn") |
|
flash_attn_module.__version__ = "0.0.0-disabled" |
|
sys.modules["flash_attn"] = flash_attn_module |
|
|
|
print("\nNOTE: Created dummy flash_attn module to avoid dependency error") |
|
print("This is just for testing basic model loading - some functionality may be disabled") |
|
|
|
print("\nLoading model with bfloat16 precision and low_cpu_mem_usage=True...") |
|
model = AutoModel.from_pretrained( |
|
"OpenGVLab/InternViT-6B-224px", |
|
torch_dtype=torch.bfloat16, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True) |
|
|
|
if torch.cuda.is_available(): |
|
print("Moving model to CUDA...") |
|
model = model.cuda() |
|
|
|
model.eval() |
|
print("β Model loaded successfully!") |
|
|
|
|
|
print("\nLoading image processor...") |
|
image_processor = CLIPImageProcessor.from_pretrained("OpenGVLab/InternViT-6B-224px") |
|
print("β Image processor loaded successfully!") |
|
|
|
|
|
print("\nCreating test image...") |
|
test_image = Image.new("RGB", (224, 224), color="red") |
|
|
|
|
|
print("Processing test image...") |
|
pixel_values = image_processor(images=test_image, return_tensors="pt").pixel_values |
|
if torch.cuda.is_available(): |
|
pixel_values = pixel_values.to(torch.bfloat16).cuda() |
|
|
|
|
|
params = sum(p.numel() for p in model.parameters()) |
|
print(f"Model parameters: {params:,}") |
|
|
|
|
|
print("Running forward pass...") |
|
with torch.no_grad(): |
|
outputs = model(pixel_values) |
|
|
|
print("β Forward pass successful!") |
|
print(f"Output shape: {outputs.last_hidden_state.shape}") |
|
|
|
return f"SUCCESS: Model loaded and test passed!\nParameters: {params:,}\nOutput shape: {outputs.last_hidden_state.shape}" |
|
|
|
except Exception as e: |
|
print(f"\nβ ERROR: {str(e)}") |
|
traceback.print_exc() |
|
return f"FAILED: Error loading model or processing image\nError: {str(e)}" |
|
|
|
|
|
def create_interface(): |
|
with gr.Blocks(title="InternViT-6B Test") as demo: |
|
gr.Markdown("# InternViT-6B Model Loading Test (without Flash Attention)") |
|
gr.Markdown("### This version uses a dummy flash-attn implementation to avoid compilation issues") |
|
|
|
with gr.Row(): |
|
test_btn = gr.Button("Test Model Loading") |
|
output = gr.Textbox(label="Test Results", lines=10) |
|
|
|
test_btn.click(fn=load_and_test_model, inputs=[], outputs=output) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
print("\nEnvironment variables:") |
|
relevant_vars = ["CUDA_VISIBLE_DEVICES", "NVIDIA_VISIBLE_DEVICES", |
|
"TRANSFORMERS_CACHE", "HF_HOME", "PYTORCH_CUDA_ALLOC_CONF"] |
|
for var in relevant_vars: |
|
print(f"{var}: {os.environ.get(var, 'Not set')}") |
|
|
|
|
|
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" |
|
|
|
|
|
demo = create_interface() |
|
demo.launch(share=False, server_name="0.0.0.0") |