Spaces:
Build error
Build error
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image
|
3 |
+
import requests
|
4 |
+
from io import BytesIO
|
5 |
+
import gradio as gr
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
import warnings
|
10 |
+
|
11 |
+
# Suppress warnings
|
12 |
+
warnings.filterwarnings("ignore")
|
13 |
+
|
14 |
+
print("Starting InternVL2 with Llama3-76B initialization...")
|
15 |
+
print(f"Python version: {sys.version}")
|
16 |
+
print(f"PyTorch version: {torch.__version__}")
|
17 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
18 |
+
|
19 |
+
# Set up environment for CUDA
|
20 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
21 |
+
|
22 |
+
# Check GPU availability
|
23 |
+
def check_gpu():
|
24 |
+
if not torch.cuda.is_available():
|
25 |
+
print("CUDA is not available. This application requires GPU acceleration.")
|
26 |
+
return False
|
27 |
+
|
28 |
+
try:
|
29 |
+
# Test GPU with a simple operation
|
30 |
+
test_tensor = torch.rand(10, device="cuda")
|
31 |
+
_ = test_tensor + test_tensor
|
32 |
+
print(f"GPU is available: {torch.cuda.get_device_name(0)}")
|
33 |
+
return True
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Error initializing GPU: {str(e)}")
|
36 |
+
return False
|
37 |
+
|
38 |
+
# Global flag for GPU availability
|
39 |
+
USE_GPU = check_gpu()
|
40 |
+
|
41 |
+
# Import InternVL modules
|
42 |
+
try:
|
43 |
+
from transformers import AutoModel, AutoProcessor
|
44 |
+
HAS_TRANSFORMERS = True
|
45 |
+
print("Successfully imported transformers")
|
46 |
+
except ImportError as e:
|
47 |
+
print(f"Error importing transformers: {str(e)}")
|
48 |
+
HAS_TRANSFORMERS = False
|
49 |
+
|
50 |
+
# Initialize models
|
51 |
+
internvit_model = None
|
52 |
+
llama_model = None
|
53 |
+
processor = None
|
54 |
+
|
55 |
+
def load_models():
|
56 |
+
global internvit_model, llama_model, processor
|
57 |
+
|
58 |
+
if not USE_GPU:
|
59 |
+
print("Cannot load models without GPU")
|
60 |
+
return False
|
61 |
+
|
62 |
+
try:
|
63 |
+
print("Loading InternViT-6B model for visual feature extraction...")
|
64 |
+
|
65 |
+
# Following the GitHub repo instructions for using InternViT-6B
|
66 |
+
processor = AutoProcessor.from_pretrained("OpenGVLab/InternViT-6B-224px")
|
67 |
+
internvit_model = AutoModel.from_pretrained("OpenGVLab/InternViT-6B-224px")
|
68 |
+
|
69 |
+
if USE_GPU:
|
70 |
+
internvit_model = internvit_model.to("cuda")
|
71 |
+
|
72 |
+
print("InternViT-6B model loaded successfully!")
|
73 |
+
|
74 |
+
# For demonstration purposes, we'll just extract visual features for now
|
75 |
+
# In a real implementation, we would load Llama3-76B here
|
76 |
+
print("Note: Llama3-76B model loading is commented out for this demonstration")
|
77 |
+
# llama_model = ...
|
78 |
+
|
79 |
+
return True
|
80 |
+
except Exception as e:
|
81 |
+
print(f"Error loading models: {str(e)}")
|
82 |
+
return False
|
83 |
+
|
84 |
+
# Load models on startup
|
85 |
+
MODELS_LOADED = load_models()
|
86 |
+
|
87 |
+
def process_image(image_path, sample_url=None):
|
88 |
+
"""Process an image using InternViT-6B for feature extraction"""
|
89 |
+
|
90 |
+
# Load image
|
91 |
+
if sample_url and not image_path:
|
92 |
+
# Load from URL if provided and no image uploaded
|
93 |
+
response = requests.get(sample_url)
|
94 |
+
image = Image.open(BytesIO(response.content))
|
95 |
+
print(f"Loaded sample image from URL: {sample_url}")
|
96 |
+
else:
|
97 |
+
# Use uploaded image
|
98 |
+
if isinstance(image_path, str):
|
99 |
+
image = Image.open(image_path)
|
100 |
+
else:
|
101 |
+
image = image_path
|
102 |
+
|
103 |
+
if not image:
|
104 |
+
return "No image provided"
|
105 |
+
|
106 |
+
if not MODELS_LOADED:
|
107 |
+
return "Models failed to load. Please check the logs."
|
108 |
+
|
109 |
+
try:
|
110 |
+
# Start timing
|
111 |
+
start_time = time.time()
|
112 |
+
|
113 |
+
# Process image through the visual encoder
|
114 |
+
print("Processing image through InternViT-6B...")
|
115 |
+
inputs = processor(images=image, return_tensors="pt")
|
116 |
+
if USE_GPU:
|
117 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
118 |
+
|
119 |
+
with torch.no_grad():
|
120 |
+
outputs = internvit_model(**inputs)
|
121 |
+
|
122 |
+
# Extract image features
|
123 |
+
image_features = outputs.last_hidden_state
|
124 |
+
pooled_output = outputs.pooler_output
|
125 |
+
|
126 |
+
# In a real implementation, we would pass these features to Llama3-76B
|
127 |
+
# For now, we'll just return info about the extracted features
|
128 |
+
feature_info = f"""
|
129 |
+
Image successfully processed through InternViT-6B:
|
130 |
+
- Last hidden state shape: {image_features.shape}
|
131 |
+
- Pooled output shape: {pooled_output.shape}
|
132 |
+
|
133 |
+
In a complete implementation, these visual features would be passed to Llama3-76B
|
134 |
+
for generating text responses about the image.
|
135 |
+
|
136 |
+
Note: This is a demonstration of visual feature extraction only.
|
137 |
+
"""
|
138 |
+
|
139 |
+
# Calculate elapsed time
|
140 |
+
elapsed = time.time() - start_time
|
141 |
+
|
142 |
+
return f"{feature_info}\n\nProcessing completed in {elapsed:.2f} seconds."
|
143 |
+
|
144 |
+
except Exception as e:
|
145 |
+
return f"Error processing image: {str(e)}"
|
146 |
+
|
147 |
+
# Set up Gradio interface
|
148 |
+
def create_interface():
|
149 |
+
with gr.Blocks(title="InternVL2 with Llama3-76B") as demo:
|
150 |
+
gr.Markdown("# InternVL2 Visual Feature Extraction Demo")
|
151 |
+
gr.Markdown("## Using InternViT-6B for visual feature extraction")
|
152 |
+
|
153 |
+
# System status
|
154 |
+
status = "✅ Ready" if MODELS_LOADED else "❌ Models failed to load"
|
155 |
+
gr.Markdown(f"### System Status: {status}")
|
156 |
+
|
157 |
+
with gr.Row():
|
158 |
+
with gr.Column():
|
159 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
160 |
+
sample_btn = gr.Button("Use Sample Image")
|
161 |
+
|
162 |
+
with gr.Column():
|
163 |
+
output_text = gr.Textbox(label="Results", lines=10)
|
164 |
+
|
165 |
+
# Process button
|
166 |
+
process_btn = gr.Button("Extract Visual Features")
|
167 |
+
process_btn.click(
|
168 |
+
fn=process_image,
|
169 |
+
inputs=[input_image],
|
170 |
+
outputs=output_text
|
171 |
+
)
|
172 |
+
|
173 |
+
# Sample image button logic
|
174 |
+
sample_image_url = "https://huggingface.co/OpenGVLab/InternVL2/resolve/main/assets/demo.jpg"
|
175 |
+
|
176 |
+
def use_sample():
|
177 |
+
return process_image(None, sample_image_url)
|
178 |
+
|
179 |
+
sample_btn.click(
|
180 |
+
fn=use_sample,
|
181 |
+
inputs=[],
|
182 |
+
outputs=output_text
|
183 |
+
)
|
184 |
+
|
185 |
+
# Add some explanation
|
186 |
+
gr.Markdown("""
|
187 |
+
## About This Demo
|
188 |
+
|
189 |
+
This demonstration shows how to use InternViT-6B for visual feature extraction,
|
190 |
+
following the instructions from the OpenGVLab/InternVL GitHub repository.
|
191 |
+
|
192 |
+
The application extracts visual features from the input image that would typically
|
193 |
+
be passed to a language model like Llama3-76B. In a complete implementation,
|
194 |
+
these features would be used to generate text responses about the image.
|
195 |
+
""")
|
196 |
+
|
197 |
+
return demo
|
198 |
+
|
199 |
+
# Main function
|
200 |
+
if __name__ == "__main__":
|
201 |
+
demo = create_interface()
|
202 |
+
demo.launch(share=False, server_name="0.0.0.0")
|