Spaces:
Runtime error
Runtime error
import torch | |
import os | |
import sys | |
import traceback | |
import requests | |
import json | |
import platform | |
print("=" * 50) | |
print("DETAILED MODEL LOADING DIAGNOSTIC") | |
print("=" * 50) | |
# System information | |
print("\n1. SYSTEM INFORMATION:") | |
print(f"Python version: {sys.version}") | |
print(f"PyTorch version: {torch.__version__}") | |
print(f"Platform: {platform.platform()}") | |
print(f"Processor: {platform.processor()}") | |
# Environment variables | |
print("\n2. ENVIRONMENT VARIABLES:") | |
relevant_vars = ["CUDA_VISIBLE_DEVICES", "NVIDIA_VISIBLE_DEVICES", "TRANSFORMERS_CACHE", "HF_HOME"] | |
for var in relevant_vars: | |
print(f"{var}: {os.environ.get(var, 'Not set')}") | |
# GPU information | |
print("\n3. GPU DETECTION:") | |
print(f"CUDA available: {torch.cuda.is_available()}") | |
if torch.cuda.is_available(): | |
try: | |
print(f"CUDA version: {torch.version.cuda}") | |
print(f"GPU count: {torch.cuda.device_count()}") | |
for i in range(torch.cuda.device_count()): | |
print(f"GPU {i}: {torch.cuda.get_device_name(i)}") | |
# Test GPU with a simple operation | |
print("\nTesting GPU with tensor operations...") | |
test_tensor = torch.rand(1000, 1000, device="cuda") | |
start = torch.cuda.Event(enable_timing=True) | |
end = torch.cuda.Event(enable_timing=True) | |
start.record() | |
result = torch.matmul(test_tensor, test_tensor) | |
end.record() | |
torch.cuda.synchronize() | |
print(f"GPU tensor operation completed in {start.elapsed_time(end):.2f} ms") | |
# Memory info | |
print(f"\nTotal GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB") | |
print(f"Allocated GPU memory: {torch.cuda.memory_allocated() / 1e9:.2f} GB") | |
print(f"Reserved GPU memory: {torch.cuda.memory_reserved() / 1e9:.2f} GB") | |
except Exception as e: | |
print(f"Error testing GPU: {str(e)}") | |
traceback.print_exc() | |
else: | |
print("CUDA is not available. This is a critical issue for model loading.") | |
# HuggingFace hub connectivity | |
print("\n4. HUGGINGFACE HUB CONNECTIVITY:") | |
try: | |
print("Testing connection to HuggingFace Hub...") | |
response = requests.get("https://huggingface.co/api/models/OpenGVLab/InternViT-6B-224px") | |
if response.status_code == 200: | |
print("Successfully connected to HuggingFace Hub") | |
model_info = response.json() | |
print(f"Model exists: OpenGVLab/InternViT-6B-224px") | |
if 'downloads' in model_info: | |
print(f"Downloads: {model_info['downloads']}") | |
else: | |
print(f"Failed to connect to HuggingFace Hub: Status code {response.status_code}") | |
print(response.text) | |
except Exception as e: | |
print(f"Error connecting to HuggingFace Hub: {str(e)}") | |
traceback.print_exc() | |
# Attempt model loading with detailed error capture | |
print("\n5. ATTEMPTING MODEL LOADING:") | |
try: | |
print("Importing transformers...") | |
from transformers import AutoModel, AutoProcessor | |
print("β Transformers imported successfully") | |
print("\nLoading AutoProcessor...") | |
processor = AutoProcessor.from_pretrained("OpenGVLab/InternViT-6B-224px") | |
print("β AutoProcessor loaded successfully") | |
print("\nLoading AutoModel...") | |
model = AutoModel.from_pretrained("OpenGVLab/InternViT-6B-224px") | |
print("β AutoModel loaded successfully") | |
if torch.cuda.is_available(): | |
print("\nMoving model to CUDA...") | |
model = model.to("cuda") | |
print("β Model moved to CUDA successfully") | |
print("\nModel loading SUCCESSFUL") | |
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}") | |
except Exception as e: | |
print(f"\nβ ERROR LOADING MODEL: {str(e)}") | |
print("\nDetailed traceback:") | |
traceback.print_exc() | |
print("\n" + "=" * 50) | |
print("DIAGNOSTIC COMPLETE") | |
print("=" * 50) |