File size: 2,073 Bytes
679bc5b
 
 
 
6b717c4
 
be16c65
 
679bc5b
be16c65
6b717c4
679bc5b
6b717c4
 
679bc5b
 
6b717c4
679bc5b
 
be16c65
6b717c4
be16c65
 
 
 
6b717c4
 
 
 
 
 
 
be16c65
6b717c4
 
 
 
 
679bc5b
6b717c4
be16c65
679bc5b
 
 
 
 
6b717c4
679bc5b
6b717c4
 
679bc5b
 
 
 
6b717c4
be16c65
6b717c4
 
 
 
679bc5b
be16c65
 
679bc5b
6b717c4
679bc5b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import pandas as pd
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load the pre-trained model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-imdb")
model = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-imdb")

def analyze_text(text):
    # Preprocess the text
    text = text.lower()

    # Encode the text
    encoded_text = tokenizer(text, truncation=True, padding=True, return_tensors='pt')

    # Classify the text
    with torch.no_grad():
        output = model(**encoded_text)
        predictions = output.logits.argmax(-1).item()

    if predictions == 1:  # For IMDb sentiment analysis, 1 indicates positive sentiment
        return "Job Related"
    else:
        return "Not Job Related"

def count_job_related_messages(data):
    job_related_count = 0
    not_job_related_count = 0

    for message in data["message"]:
        result = analyze_text(message)
        if result == "Job Related":
            job_related_count += 1
        else:
            not_job_related_count += 1

    return job_related_count, not_job_related_count

# Streamlit application
st.title("Job Related Message Analyzer")

uploaded_file = st.file_uploader("Upload CSV file")
user_input = st.text_input("Enter text")

if uploaded_file:
    # Read the CSV file
    data = pd.read_csv(uploaded_file)

    # Analyze messages
    results = []
    for message in data["message"]:
        result = analyze_text(message)
        results.append(result)

    data["Job Related"] = results

    # Count job-related messages
    job_related_count, not_job_related_count = count_job_related_messages(data)

    st.dataframe(data)
    st.write(f"Job Related Messages: {job_related_count}")
    st.write(f"Not Job Related Messages: {not_job_related_count}")
elif user_input:
    # Analyze user-input text
    result = analyze_text(user_input)
    st.write(f"Message Classification: {result}")
else:
    st.write("Please upload a CSV file or enter text to analyze.")