Spaces:
Runtime error
Runtime error
File size: 2,662 Bytes
0bb16c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import itertools
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"device: {device}")
tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt-neox-3.6b-instruction-sft", device_map="auto", torch_dtype=torch.float16)
model = model.to(device)
@torch.no_grad()
def inference_func(prompt, max_new_tokens=128, temperature=0.7):
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
output_ids = model.generate(
token_ids.to(model.device),
do_sample=True,
max_new_tokens=max_new_tokens,
temperature=temperature,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):], skip_special_tokens=True)
output = output.replace("<NL>", "\n")
return output
def make_prompt(message, chat_history, max_context_size: int = 10):
contexts = chat_history + [[message, ""]]
contexts = list(itertools.chain.from_iterable(contexts))
if max_context_size > 0:
context_size = max_context_size - 1
else:
context_size = 100000
contexts = contexts[-context_size:]
prompt = []
for idx, context in enumerate(reversed(contexts)):
if idx % 2 == 0:
prompt = [f"システム: {context}"] + prompt
else:
prompt = [f"ユーザー: {context}"] + prompt
prompt = "<NL>".join(prompt)
return prompt
def interact_func(message, chat_history, max_context_size, max_new_tokens, temperature):
prompt = make_prompt(message, chat_history, max_context_size)
print(f"prompt: {prompt}")
generated = inference_func(prompt, max_new_tokens, temperature)
print(f"generated: {generated}")
chat_history.append((message, generated))
return "", chat_history
with gr.Blocks() as demo:
with gr.Accordion("Configs", open=False):
# max_context_size = the number of turns * 2
max_context_size = gr.Number(value=10, label="max_context_size", precision=0)
max_new_tokens = gr.Number(value=128, label="max_new_tokens", precision=0)
temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.1, label="temperature")
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
msg.submit(interact_func, [msg, chatbot, max_context_size, max_new_tokens, temperature], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch(debug=True) |