mkshing
fix
23ef29e
import os
import itertools
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import gradio as gr
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"device: {device}")
tokenizer = AutoTokenizer.from_pretrained(
"rinna/japanese-gpt-neox-3.6b-instruction-sft", use_fast=False
)
model = AutoModelForCausalLM.from_pretrained(
"rinna/japanese-gpt-neox-3.6b-instruction-sft",
device_map="auto",
torch_dtype=torch.float16,
)
model = model.to(device)
@torch.no_grad()
def inference_func(prompt, max_new_tokens=128, temperature=0.7):
token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
output_ids = model.generate(
token_ids.to(model.device),
do_sample=True,
max_new_tokens=max_new_tokens,
temperature=temperature,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
output = tokenizer.decode(
output_ids.tolist()[0][token_ids.size(1) :], skip_special_tokens=True
)
output = output.replace("<NL>", "\n")
return output
def make_prompt(message, chat_history, max_context_size: int = 10):
contexts = chat_history + [[message, ""]]
contexts = list(itertools.chain.from_iterable(contexts))
if max_context_size > 0:
context_size = max_context_size - 1
else:
context_size = 100000
contexts = contexts[-context_size:]
prompt = []
for idx, context in enumerate(reversed(contexts)):
if idx % 2 == 0:
prompt = [f"システム: {context}"] + prompt
else:
prompt = [f"ユーザー: {context}"] + prompt
prompt = "<NL>".join(prompt)
return prompt
def interact_func(message, chat_history, max_context_size, max_new_tokens, temperature):
prompt = make_prompt(message, chat_history, max_context_size)
print(f"prompt: {prompt}")
generated = inference_func(prompt, max_new_tokens, temperature)
print(f"generated: {generated}")
chat_history.append((message, generated))
return "", chat_history
ORIGINAL_SPACE_ID = "mkshing/rinna-japanese-gpt-neox-3.6b-instruction-sft"
SPACE_ID = os.getenv("SPACE_ID", ORIGINAL_SPACE_ID)
SHARED_UI_WARNING = f"""# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
"""
if os.getenv("SYSTEM") == "spaces" and SPACE_ID != ORIGINAL_SPACE_ID:
SETTINGS = (
f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
)
else:
SETTINGS = "Settings"
CUDA_NOT_AVAILABLE_WARNING = f"""# Attention - Running on CPU.
<center>
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
"T4 small" is sufficient to run this demo.
</center>
"""
def show_warning(warning_text: str) -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Box():
gr.Markdown(warning_text)
return demo
with gr.Blocks() as demo:
if os.getenv('IS_SHARED_UI'):
show_warning(SHARED_UI_WARNING)
if not torch.cuda.is_available():
show_warning(CUDA_NOT_AVAILABLE_WARNING)
gr.Markdown("""# Chat with `rinna/japanese-gpt-neox-3.6b-instruction-sft`
<a href=\"https://colab.research.google.com/github/mkshing/notebooks/blob/main/rinna_japanese_gpt_neox_3_6b_instruction_sft.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>
This demo is a chat UI for [rinna/japanese-gpt-neox-3.6b-instruction-sft](https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft).
""")
with gr.Accordion("Configs", open=False):
# max_context_size = the number of turns * 2
max_context_size = gr.Number(value=10, label="max_context_size", precision=0)
max_new_tokens = gr.Number(value=128, label="max_new_tokens", precision=0)
temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.1, label="temperature")
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
msg.submit(
interact_func,
[msg, chatbot, max_context_size, max_new_tokens, temperature],
[msg, chatbot],
)
clear.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch(debug=True)