mkthoma commited on
Commit
46a607d
·
1 Parent(s): 6546822

app update

Browse files
Files changed (1) hide show
  1. app.py +15 -3
app.py CHANGED
@@ -74,9 +74,7 @@ def generate(
74
  eos_id:int = None,
75
  ) -> torch.Tensor:
76
  """Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
77
-
78
  The implementation of this function is modified from A. Karpathy's nanoGPT.
79
-
80
  Args:
81
  model: The model to use.
82
  idx: Tensor of shape (T) with indices of the prompt sequence.
@@ -131,7 +129,7 @@ def generate(
131
 
132
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
133
 
134
- def generate_dialogue(input_text, temperature=0.8, max_tokens=200, top_k=1):
135
  encoded = tokenizer.encode(input_text, device=fabric.device)
136
  max_returned_tokens = encoded.size(0) + max_tokens
137
 
@@ -148,4 +146,18 @@ def generate_dialogue(input_text, temperature=0.8, max_tokens=200, top_k=1):
148
 
149
  return(tokenizer.decode(y))
150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
 
 
74
  eos_id:int = None,
75
  ) -> torch.Tensor:
76
  """Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
 
77
  The implementation of this function is modified from A. Karpathy's nanoGPT.
 
78
  Args:
79
  model: The model to use.
80
  idx: Tensor of shape (T) with indices of the prompt sequence.
 
129
 
130
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
131
 
132
+ def generate_text(input_text, temperature=0.8, max_tokens=200, top_k=None):
133
  encoded = tokenizer.encode(input_text, device=fabric.device)
134
  max_returned_tokens = encoded.size(0) + max_tokens
135
 
 
146
 
147
  return(tokenizer.decode(y))
148
 
149
+ import gradio as gr
150
+
151
+ title = "GPT from scratch"
152
+
153
+ description1 = "GPT implementation taken from <a href='https://github.com/Lightning-AI/lit-gpt'>Lit-GPT</a>. It is trained on a samples of the <a href='https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample'>RedPajama 1 trillion dataset</a> to understand how GPT's are trained and built. The github link can be found <a href='https://github.com/mkthoma/gpt_from_scratch'>here.</a>"
154
+
155
+ demo = gr.Interface(generate_text,
156
+ inputs=[gr.Textbox(label="Enter any prompt ", type="text", value="Once upon a time,"),
157
+ gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature"),
158
+ gr.Slider(minimum=200, maximum=1000, step=50, value=300, label="Max Tokens"),
159
+ gr.Slider(minimum=10, maximum=100, step=5, value=20, label="Top K")],
160
+ outputs=gr.Textbox(label="Text generated", type="text"), description=description1)
161
+
162
 
163
+ demo.launch()