Spaces:
Sleeping
Sleeping
app update
Browse files
app.py
CHANGED
@@ -1 +1,92 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.optim as optim
|
3 |
+
import lightning.pytorch as pl
|
4 |
+
from torchvision import transforms
|
5 |
+
from custom_yolo.custom_library.utils import cells_to_bboxes, non_max_suppression
|
6 |
+
from custom_yolo.custom_library import config
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import matplotlib.patches as patches
|
9 |
+
from custom_yolo.custom_library.lightning_model import YOLOv3Lightning
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
13 |
+
from custom_yolo.custom_library.gradio_utils import draw_predictions, YoloCAM
|
14 |
+
import gradio as gr
|
15 |
+
import os
|
16 |
+
import albumentations as A
|
17 |
+
from albumentations.pytorch import ToTensorV2
|
18 |
+
|
19 |
+
|
20 |
+
model = YOLOv3Lightning(config=config)
|
21 |
+
model.load_state_dict(torch.load("custom_yolo_model.pth", map_location=torch.device('cpu')), strict=False)
|
22 |
+
model.setup(stage="test")
|
23 |
+
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
|
24 |
+
|
25 |
+
scaled_anchors = (torch.tensor(config.ANCHORS)* torch.tensor(config.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)).to(config.DEVICE)
|
26 |
+
|
27 |
+
transforms = A.Compose(
|
28 |
+
[
|
29 |
+
A.LongestMaxSize(max_size=config.IMAGE_SIZE),
|
30 |
+
A.PadIfNeeded(
|
31 |
+
min_height=config.IMAGE_SIZE, min_width=config.IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
|
32 |
+
),
|
33 |
+
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
|
34 |
+
ToTensorV2(),
|
35 |
+
],
|
36 |
+
)
|
37 |
+
|
38 |
+
def model_inference(image, iou_threshold=0.5, threshold=0.4, show_cam="No", transparency=0.5, target_layer=-2):
|
39 |
+
# Transforming image
|
40 |
+
transformed_image = transforms(image=image)["image"].unsqueeze(0)
|
41 |
+
output = model(transformed_image)
|
42 |
+
# Selecting layer for gradCAM
|
43 |
+
if target_layer == -2:
|
44 |
+
layer = [model.model.layers[-2]]
|
45 |
+
else:
|
46 |
+
layer = [model.model.layers[-1]]
|
47 |
+
|
48 |
+
cam = YoloCAM(model=model, target_layers=layer, use_cuda=False)
|
49 |
+
|
50 |
+
bboxes = [[] for _ in range(1)]
|
51 |
+
for i in range(3):
|
52 |
+
batch_size, A, S, _, _ = output[i].shape
|
53 |
+
anchor = scaled_anchors[i]
|
54 |
+
boxes_scale_i = cells_to_bboxes(output[i], anchor, S=S, is_preds=True)
|
55 |
+
for idx, (box) in enumerate(boxes_scale_i):
|
56 |
+
bboxes[idx] += box
|
57 |
+
|
58 |
+
nms_boxes = non_max_suppression(bboxes[0], iou_threshold=iou_threshold, threshold=threshold, box_format="midpoint")
|
59 |
+
plot_img = draw_predictions(image.copy(), nms_boxes, class_labels=config.PASCAL_CLASSES)
|
60 |
+
if show_cam == "No":
|
61 |
+
return [plot_img]
|
62 |
+
else:
|
63 |
+
grayscale_cam = cam(transformed_image, scaled_anchors)[0, :, :]
|
64 |
+
img = cv2.resize(image, (416, 416))
|
65 |
+
img = np.float32(img) / 255
|
66 |
+
cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True, image_weight=transparency)
|
67 |
+
return [plot_img, cam_image]
|
68 |
+
|
69 |
+
|
70 |
+
title = "Custom YOLOv3"
|
71 |
+
description = "Pytorch Lightning implemetation of YOLOv3 on Pascal VOC dataset.\
|
72 |
+
Supported classes are aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, and TV/monitor."
|
73 |
+
|
74 |
+
# examples = [
|
75 |
+
# ["images/000014.jpg", 0.5, 0.4, True, 0.5],
|
76 |
+
# ["images/000017.jpg", 0.6, 0.5, True, 0.5],
|
77 |
+
# ["images/000018.jpg", 0.55, 0.45, True, 0.5],
|
78 |
+
# ["images/000030.jpg", 0.5, 0.4, True, 0.5],
|
79 |
+
# ["images/Puppies.jpg", 0.6, 0.7, True, 0.5],
|
80 |
+
# ]
|
81 |
+
|
82 |
+
demo = gr.Interface(model_inference, inputs=[gr.Image(shape=(416, 416), label="Input an image"),
|
83 |
+
gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
|
84 |
+
gr.Slider(0, 1, value=0.4, label="Threshold"),
|
85 |
+
gr.Radio(["Yes", "No"], value="No" , label="Show GradCAM outputs"),
|
86 |
+
gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"),
|
87 |
+
gr.Slider(-2, -1, value=-2, step=1, label="Which Layer?")],
|
88 |
+
outputs=[gr.Gallery(rows=2, columns=1)],
|
89 |
+
title=title, description=description)
|
90 |
+
demo.launch()
|
91 |
+
|
92 |
+
|