mkurman's picture
bug fix
6126672
import gradio as gr
from huggingface_hub import InferenceClient
import spaces
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("mkurman/llama-3.2-MEDIT-3B-o1")
@spaces.GPU
def respond(
message,
history: list[tuple[str, str]],
# system_message,
max_tokens,
temperature,
top_p,
):
# messages = [{"role": "system", "content": system_message}]
messages = []
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
counter = 0
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
logprobs=True,
stop=['</Output>']
):
text = message.choices[0].delta.content
token = message.choices[0].logprobs.content[0].token
if token in ['<Thought>', '<|python_tag|>']:
text = '## Thinking:\n\n' + text
if token == '<Output>':
if counter > 0:
text = '## Output:\n\n' + text
else:
text = '## Thinking:\n\n' + text
if token == '</Output>':
yield response
break
response += text
counter += 1
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
title="LLama 3.2 MedIT 3B o1",
description="Built with Llama. Please note that this model is not a source of knowledge and is not intended to provide 100% accurate answers. If the model provides answers that are generally considered inappropriate, please contact me.",
additional_inputs=[
# gr.Textbox(value="You are a helpful, smart, kind, and efficient AI assistant. You always fulfill the user's requests to the best of your ability. You always think and reflect before providing final answers in a step-by-step manner.", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max new tokens"),
gr.Slider(minimum=0.0, maximum=2.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()