File size: 6,474 Bytes
9afbc33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import math

import numpy as np
import pandas as pd


from tqdm.auto import tqdm
from rdkit.ML.Scoring.Scoring import CalcBEDROC
from sklearn.metrics import accuracy_score, balanced_accuracy_score, roc_auc_score, average_precision_score, \
    matthews_corrcoef, precision_score, recall_score, f1_score, confusion_matrix

def specificity_score(true_labels, predicted_labels):
    tn, fp, _, _ = confusion_matrix(true_labels, predicted_labels).ravel()
    specificity = tn / (tn + fp)
    return specificity

MAIN_DIR = '' # todo add project dir

def balanced_mcc_score(sensitivity, specificity, prevalence):
    """Returns the Matthews' correlation coefficient at the given
     sensitivity, specificity and prevalence.
    
    Parameters
    ----------
    sensitivity : float
        The sensitivity of the model
    specificity : float
        The specificity of the model
    prevalence : float
        The prevalence of the test set
        
    Returns
    ------
    float
        Matthews' correlation coefficient as a float
    """
    numerator = sensitivity + specificity - 1
    denominatorFirstTerm = sensitivity + (1 - specificity)*(1 - prevalence) / prevalence
    denominatorSecondTerm = specificity + (1 -sensitivity)*prevalence/(1 - prevalence) 
    denominator = math.sqrt(denominatorFirstTerm * denominatorSecondTerm)
    
    if sensitivity == 1 and specificity == 0:
        denominator = 1
    if sensitivity == 0 and specificity == 1:
        denominator = 1.
    
    return(numerator / denominator)

def ef_top_per(predictions, prevalance, top_frac=0.01):

    n = int(len(predictions) * top_frac)
    predictions = sorted(predictions, reverse=True)[:n]
    f = np.sum(np.round(predictions)) / n
    return  f / prevalance

def compute_metrics(df):
    """
    Compute a set of classification metric for single set of predictions.

    Args:
        df : dataframe with true labels in 'Label' column and probabilistic predictions in 'Prediction' column
        
    Returns:
        df_metrics: dataframe with metrics in 'Metric' column and values in 'Value' column
    """
    true_labels = df['Label']
    prevalance = sum(true_labels) / len(true_labels)
    predictions = df['Prediction']
    
    # print(true_labels.value_counts())
    # print(predictions.max())
    
    acc = accuracy_score(true_labels, predictions.round())
    bacc = balanced_accuracy_score(true_labels, predictions.round())
    precision = precision_score(true_labels, predictions.round(), zero_division=0.0)
    recall = recall_score(true_labels, predictions.round())
    specificity = specificity_score(true_labels, predictions.round())   
    mcc = matthews_corrcoef(true_labels, predictions.round())
    bmcc = balanced_mcc_score(recall, specificity, prevalance)
    f1 = f1_score(true_labels, predictions.round())

    auc = roc_auc_score(true_labels, predictions)
    ap = average_precision_score(true_labels, predictions)    
    dap = ap - prevalance
    scores = df.sort_values(by='Prediction', ascending=False)[['Label', 'Prediction']].values
    bedroc = CalcBEDROC(scores, 0, 20)
    ef = ef_top_per(predictions, prevalance, 0.01)
    
    metrics_dict = {'ACC': acc, 'BACC': bacc, 'MCC': mcc, 'BMCC': bmcc, 'Precision': precision, 'Recall': recall, 'F1-score': f1, 
                    'AUC': auc, 'dAP': dap, 'BEDROC': bedroc, 'EF-1%' : ef}
    df_metrics = pd.DataFrame(metrics_dict.items(), columns=['Metric', 'Value'])

    
    return df_metrics


def get_metrics(
        tasks : list[str] = ['AID', 'UID'],
        models : list[str] = ['MHNfs', 'RF'], 
        settings : list[str] = ['1+1x3', '1+3x3', '1+7x3', '2+2x3', '2+6x3', '2+14x3', '4+4x3', '4+12x3', '4+28x3', '8+8x3', '8+24x3', '8+56x3'], 
        overwrite: bool = False):

    """
    Computes classification metrics for each combination.
    """

    file = f'{MAIN_DIR}/results_used.csv.gz'
    
    if overwrite:
        df = pd.DataFrame()
    else:
        df = pd.read_csv(file)

    path_preprocessed = ""  # todo
    df_pubchem = pd.read_csv(path_preprocessed)

    for task in tasks:
        for model in models:
            for setting in settings:
                dir = f'{MAIN_DIR}/predictions/{model}/{task}/{setting}'
                try:
                    targets = [x[:-4] for x in os.listdir(dir)]
                    pubchem_targets = df_pubchem[task].astype(str).unique().tolist()

                    for target in tqdm(targets, desc=f'{task} - {model} - {setting}'):

                        if target not in pubchem_targets:
                            continue
                        
                        # Skip already computed targets                    
                        if not overwrite and any((df['Model'] == model) & (df['Setting'] == setting)  & (df['Task'] == task) & (df['TID'] == target)):
                            continue
                        
                        # Load predictions
                        df_task = pd.read_csv(f'{dir}/{target}.csv')
                        
                        # Retrieve oragnism and L1 protein classification
                        try:
                            org = df_pubchem.loc[df_pubchem[task] == target, 'Organism'].values[0]
                            l1 = df_pubchem.loc[df_pubchem[task] == target, 'L1'].values[0]            
                        except:
                            org = df_pubchem.loc[df_pubchem[task] == int(target), 'Organism'].values[0]
                            l1 = df_pubchem.loc[df_pubchem[task] == int(target), 'L1'].values[0]     
                        if l1 == None:
                            print(target, l1)        
                        
                        # Compute metrics for each fold
                        for fold in df_task.Fold.unique():
                            metrics = (compute_metrics(df_task[df_task.Fold == fold]).assign(
                                Model=model, Task=task, TID=target, Organism=org, L1=l1, Setting=setting, Fold=fold,
                                )
                            ).rename(columns={'Target' : task})
                            df = pd.concat([df, metrics], ignore_index=True) 
                except Exception as e:
                    print(e)
                    raise e

    df.to_csv(file, index=False)

if __name__ == '__main__':
    #get_metrics()
    get_metrics(settings=['1+7x3', '2+6x3', '4+4x3', '2+14x3', '4+12x3','8+8x3'],  overwrite=True)