Spaces:
Runtime error
Runtime error
File size: 7,737 Bytes
0f23c4b e4f39c4 0f23c4b e4f39c4 8339421 e4f39c4 0f23c4b 8339421 0f23c4b e4f39c4 0f23c4b e4f39c4 8339421 e4f39c4 31decce e4f39c4 8339421 e4f39c4 31decce e4f39c4 8339421 e4f39c4 8339421 31decce 8339421 31decce 0f23c4b 31decce 0f23c4b 31decce 8339421 31decce 0f23c4b 31decce e4f39c4 31decce e4f39c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import streamlit as st
import pandas as pd
from pipelines.keyphrase_extraction_pipeline import KeyphraseExtractionPipeline
from pipelines.keyphrase_generation_pipeline import KeyphraseGenerationPipeline
import orjson
from annotated_text.util import get_annotated_html
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode
import re
import string
import numpy as np
@st.cache(allow_output_mutation=True, show_spinner=False)
def load_pipeline(chosen_model):
if "keyphrase-extraction" in chosen_model:
return KeyphraseExtractionPipeline(chosen_model)
elif "keyphrase-generation" in chosen_model:
return KeyphraseGenerationPipeline(chosen_model)
def extract_keyphrases():
st.session_state.keyphrases = pipe(st.session_state.input_text)
st.session_state.data_frame = pd.concat(
[
st.session_state.data_frame,
pd.DataFrame(
data=[
np.concatenate(
(
[
st.session_state.chosen_model,
st.session_state.input_text,
],
st.session_state.keyphrases,
)
)
],
columns=["model", "text"]
+ [str(i) for i in range(len(st.session_state.keyphrases))],
),
],
ignore_index=True,
axis=0,
).fillna("")
def get_annotated_text(text, keyphrases):
for keyphrase in keyphrases:
text = re.sub(
rf"({keyphrase})([^A-Za-z])",
rf"$K:{keyphrases.index(keyphrase)}\2",
text,
flags=re.I,
count=1,
)
result = []
for i, word in enumerate(text.split(" ")):
if "$K" in word and re.search(
"(\d+)$", word.translate(str.maketrans("", "", string.punctuation))
):
result.append(
(
re.sub(
r"\$K:\d+",
keyphrases[
int(
re.search(
"(\d+)$",
word.translate(
str.maketrans("", "", string.punctuation)
),
).group(1)
)
],
word,
),
"KEY",
"#21c354",
)
)
else:
if i == len(st.session_state.input_text.split(" ")) - 1:
result.append(f" {word}")
elif i == 0:
result.append(f"{word} ")
else:
result.append(f" {word} ")
return result
def rerender_output(layout):
layout.write("βοΈ Output")
if (
len(st.session_state.keyphrases) > 0
and len(st.session_state.selected_rows) == 0
):
text, keyphrases = st.session_state.input_text, st.session_state.keyphrases
else:
text, keyphrases = (
st.session_state.selected_rows["text"].values[0],
[
keyphrase
for keyphrase in st.session_state.selected_rows.loc[
:,
st.session_state.selected_rows.columns.difference(
["model", "text"]
),
]
.astype(str)
.values.tolist()[0]
if keyphrase != ""
],
)
result = get_annotated_text(text, list(keyphrases))
layout.markdown(
get_annotated_html(*result),
unsafe_allow_html=True,
)
if "generation" in st.session_state.chosen_model:
abstractive_keyphrases = [
keyphrase
for keyphrase in keyphrases
if keyphrase.lower() not in text.lower()
]
layout.write(", ".join(abstractive_keyphrases))
if "config" not in st.session_state:
with open("config.json", "r") as f:
content = f.read()
st.session_state.config = orjson.loads(content)
st.session_state.data_frame = pd.DataFrame(columns=["model"])
st.session_state.keyphrases = []
if "select_rows" not in st.session_state:
st.session_state.selected_rows = []
st.set_page_config(
page_icon="π",
page_title="Keyphrase extraction/generation with Transformers",
layout="centered",
)
with open("css/style.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
st.header("π Keyphrase extraction/generation with Transformers")
description = """
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases
from a text. Since this is a time-consuming process, Artificial Intelligence is used to automate it.
Currently, classical machine learning methods, that use statistics and linguistics, are widely used
for the extraction process. The fact that these methods have been widely used in the community has
the advantage that there are many easy-to-use libraries. Now with the recent innovations in
deep learning methods (such as recurrent neural networks and transformers, GANS, β¦),
keyphrase extraction can be improved. These new methods also focus on the semantics and
context of a document, which is quite an improvement.
This space gives you the ability to test around with some keyphrase extraction and generation models.
Keyphrase extraction models are transformers models fine-tuned as a token classification problem where
the tokens in a text are annotated as:
* B: Beginning of a keyphrase
* I: Inside a keyphrases
* O: Outside a keyhprase.
While keyphrase extraction can only extract keyphrases from a given text. Keyphrase generation models
work a bit differently. Here you use an encoder-decoder model like BART to generate keyphrases from a given text.
These models also have the ability to generate keyphrases, which are not present in the text π€―.
Do you want to see some magic π§ββοΈ? Try it out yourself! π
"""
st.write(description)
with st.form("test"):
chosen_model = st.selectbox(
"Choose your model:",
st.session_state.config.get("models"),
)
st.session_state.chosen_model = chosen_model
st.markdown(
f"For more information about the chosen model, please be sure to check it out the [π€ Model Card](https://huggingface.co/DeDeckerThomas/{chosen_model})."
)
with st.spinner("Loading pipeline..."):
pipe = load_pipeline(
f"{st.session_state.config.get('model_author')}/{st.session_state.chosen_model}"
)
st.session_state.input_text = st.text_area(
"β Input", st.session_state.config.get("example_text"), height=300
).replace("\n", " ")
with st.spinner("Extracting keyphrases..."):
pressed = st.form_submit_button("Extract", on_click=extract_keyphrases)
if len(st.session_state.selected_rows) > 0 or len(st.session_state.keyphrases) > 0:
rerender_output(st)
if len(st.session_state.data_frame.columns) > 0:
st.subheader("π History")
builder = GridOptionsBuilder.from_dataframe(
st.session_state.data_frame, sortable=False
)
builder.configure_selection(selection_mode="single", use_checkbox=True)
builder.configure_column("text", hide=True)
go = builder.build()
data = AgGrid(
st.session_state.data_frame,
gridOptions=go,
update_mode=GridUpdateMode.SELECTION_CHANGED,
)
st.session_state.selected_rows = pd.DataFrame(data["selected_rows"])
|