Spaces:
Runtime error
Runtime error
File size: 5,908 Bytes
0f23c4b e4f39c4 0f23c4b e4f39c4 8339421 e4f39c4 0f23c4b 8339421 0f23c4b e4f39c4 0f23c4b e4f39c4 8339421 e4f39c4 8339421 e4f39c4 8339421 e4f39c4 8339421 e4f39c4 8339421 e4f39c4 0f23c4b 8339421 0f23c4b e4f39c4 8339421 e4f39c4 0f23c4b e4f39c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import streamlit as st
import pandas as pd
from pipelines.keyphrase_extraction_pipeline import KeyphraseExtractionPipeline
from pipelines.keyphrase_generation_pipeline import KeyphraseGenerationPipeline
import orjson
from annotated_text.util import get_annotated_html
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode
import re
import string
import numpy as np
@st.cache(allow_output_mutation=True, show_spinner=False)
def load_pipeline(chosen_model):
if "keyphrase-extraction" in chosen_model:
return KeyphraseExtractionPipeline(chosen_model)
elif "keyphrase-generation" in chosen_model:
return KeyphraseGenerationPipeline(chosen_model)
def extract_keyphrases():
st.session_state.keyphrases = pipe(st.session_state.input_text)
st.session_state.data_frame = pd.concat(
[
st.session_state.data_frame,
pd.DataFrame(
data=[
np.concatenate(
(
[
st.session_state.chosen_model,
st.session_state.input_text,
],
st.session_state.keyphrases,
)
)
],
columns=["model", "text"]
+ [str(i) for i in range(len(st.session_state.keyphrases))],
),
],
ignore_index=True,
axis=0,
).fillna("")
def get_annotated_text(text, keyphrases):
for keyphrase in keyphrases:
text = re.sub(
rf"({keyphrase})([^A-Za-z])",
rf"$K:{keyphrases.index(keyphrase)}\2",
text,
flags=re.I,
count=1
)
result = []
for i, word in enumerate(text.split(" ")):
if "$K" in word and re.search(
"(\d+)$", word.translate(str.maketrans("", "", string.punctuation))
):
result.append(
(
re.sub(
r"\$K:\d+",
keyphrases[
int(
re.search(
"(\d+)$",
word.translate(
str.maketrans("", "", string.punctuation)
),
).group(1)
)
],
word,
),
"KEY",
"#21c354",
)
)
else:
if i == len(st.session_state.input_text.split(" ")) - 1:
result.append(f" {word}")
elif i == 0:
result.append(f"{word} ")
else:
result.append(f" {word} ")
return result
def rerender_output(layout):
layout.subheader("π§ Output")
if (
len(st.session_state.keyphrases) > 0
and len(st.session_state.selected_rows) == 0
):
text, keyphrases = st.session_state.input_text, st.session_state.keyphrases
else:
text, keyphrases = (
st.session_state.selected_rows["text"].values[0],
[
keyphrase
for keyphrase in st.session_state.selected_rows.loc[
:,
st.session_state.selected_rows.columns.difference(
["model", "text"]
),
]
.astype(str)
.values.tolist()[0]
if keyphrase != ""
],
)
result = get_annotated_text(text, list(keyphrases))
layout.markdown(
get_annotated_html(*result),
unsafe_allow_html=True,
)
if "generation" in st.session_state.chosen_model:
abstractive_keyphrases = [
keyphrase
for keyphrase in keyphrases
if keyphrase.lower() not in text.lower()
]
layout.write(", ".join(abstractive_keyphrases))
if "config" not in st.session_state:
with open("config.json", "r") as f:
content = f.read()
st.session_state.config = orjson.loads(content)
st.session_state.data_frame = pd.DataFrame(columns=["model"])
st.session_state.keyphrases = []
if "select_rows" not in st.session_state:
st.session_state.selected_rows = []
st.set_page_config(
page_icon="π",
page_title="Keyphrase extraction/generation with Transformers",
layout="wide",
)
st.header("π Keyphrase extraction/generation with Transformers")
col1, col2 = st.columns(2)
chosen_model = col1.selectbox(
"Choose your model:",
st.session_state.config.get("models"),
)
st.session_state.chosen_model = chosen_model
with st.spinner("Loading pipeline..."):
pipe = load_pipeline(
f"{st.session_state.config.get('model_author')}/{st.session_state.chosen_model}"
)
st.session_state.input_text = col1.text_area(
"Input", st.session_state.config.get("example_text"), height=300
).replace("\n", " ")
with st.spinner("Extracting keyphrases..."):
pressed = col1.button("Extract", on_click=extract_keyphrases)
if len(st.session_state.data_frame.columns) > 0:
st.subheader("π History")
builder = GridOptionsBuilder.from_dataframe(
st.session_state.data_frame, sortable=False
)
builder.configure_selection(selection_mode="single", use_checkbox=True)
builder.configure_column("text", hide=True)
go = builder.build()
data = AgGrid(
st.session_state.data_frame,
gridOptions=go,
update_mode=GridUpdateMode.SELECTION_CHANGED,
)
st.session_state.selected_rows = pd.DataFrame(data["selected_rows"])
if len(st.session_state.selected_rows) > 0 or len(st.session_state.keyphrases) > 0:
rerender_output(col2)
|