Spaces:
Running
on
L4
Running
on
L4
File size: 4,335 Bytes
20aa964 a360f5e 20aa964 4149fa9 20aa964 4b54665 44fe74d 3e2702a 4b54665 3e2702a a360f5e 20aa964 a360f5e 20aa964 a360f5e 20aa964 a360f5e 4149fa9 20aa964 a360f5e 4149fa9 a360f5e 4149fa9 4b54665 5cfec42 44fe74d 5cfec42 44fe74d 20aa964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
import shutil
import subprocess
import signal
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
from huggingface_hub import HfApi
from huggingface_hub import ModelCard
from textwrap import dedent
HF_PATH = "https://huggingface.co/"
CONV_TEMPLATES = [
"llama-3",
"llama-3_1",
"chatml",
"chatml_nosystem",
"qwen2",
"open_hermes_mistral",
"neural_hermes_mistral",
"llama_default",
"llama-2",
"mistral_default",
"gpt2",
"codellama_completion",
"codellama_instruct",
"vicuna_v1.1",
"conv_one_shot",
"redpajama_chat",
"rwkv_world",
"rwkv",
"gorilla",
"gorilla-openfunctions-v2",
"guanaco",
"dolly",
"oasst",
"stablelm",
"stablecode_completion",
"stablecode_instruct",
"minigpt",
"moss",
"LM",
"stablelm-3b",
"gpt_bigcode",
"wizardlm_7b",
"wizard_coder_or_math",
"glm",
"custom", # for web-llm only
"phi-2",
"phi-3",
"phi-3-vision",
"stablelm-2",
"gemma_instruction",
"orion",
"llava",
"hermes2_pro_llama3",
"hermes3_llama-3_1",
"tinyllama_v1_0",
"aya-23",
]
QUANTIZATIONS = ["q0f16",
"q0f32",
"q3f16_1",
"q4f16_1",
"q4f32_1",
"q4f16_awq"]
def button_click(hf_model_id, conv_template, quantization, oauth_token: gr.OAuthToken | None):
if not oauth_token.token:
raise ValueError("Log in to Huggingface to use this")
api = HfApi(token=oauth_token.token)
model_dir_name = hf_model_id.split("/")[1]
mlc_model_name = model_dir_name + "-" + quantization + "-" + "MLC"
os.system("mkdir -p dist/models")
os.system("git lfs install")
api.snapshot_download(repo_id=hf_model_id, local_dir=f"./dist/models/{model_dir_name}")
os.system("mlc_llm convert_weight ./dist/models/" + model_dir_name + "/" + \
" --quantization " + quantization + \
" -o dist/" + mlc_model_name)
os.system("mlc_llm gen_config ./dist/models/" + model_dir_name + "/" + \
" --quantization " + quantization + " --conv-template " + conv_template + \
" -o dist/" + mlc_model_name + "/")
# push to HF
user_name = api.whoami()["name"]
created_repo_url = api.create_repo(repo_id=f"{user_name}/{mlc_model_name}", private=True)
created_repo_id = created_repo_url.repo_id
api.upload_large_folder(folder_path=f"./dist/{mlc_model_name}",
repo_id=f"{user_name}/{mlc_model_name}",
repo_type="model")
# push model card to HF
card = ModelCard.load(hf_model_id, token=oauth_token.token)
if not card.data.tags:
card.data.tags = []
card.data.tags.append("mlc-ai")
card.data.tags.append("MLC-Weight-Conversion")
card.data.base_model = hf_model_id
card.text = dedent(
f"""
# {created_repo_id}
This model was compiled using MLC-LLM with {quantization} quantization from [{hf_model_id}]({HF_PATH}{hf_model_id}).
The conversion was done using the [MLC-Weight-Conversion](https://huggingface.co/spaces/mlc-ai/MLC-Weight-Conversion) space.
To run this model, please first install [MLC-LLM](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages).
To chat with the model on your terminal:
```bash
mlc_llm chat HF://{created_repo_id}
```
For more information on how to use MLC-LLM, please visit the MLC-LLM [documentation](https://llm.mlc.ai/docs/index.html).
"""
)
card.save("./dist/README.md")
api.upload_file(path_or_fileobj="./dist/README.md",
path_in_repo="README.md",
repo_id=created_repo_id,
repo_type="model")
os.system("rm -rf dist/")
return "Successful"
with gr.Blocks() as demo:
gr.LoginButton()
model_id = gr.Textbox(label="HF Model ID")
conv = gr.Dropdown(CONV_TEMPLATES, label="Conversation Template")
quant = gr.Dropdown(QUANTIZATIONS, label="Quantization Method")
btn = gr.Button("Convert to MLC")
out = gr.Textbox(label="Conversion Result")
btn.click(fn=button_click , inputs=[model_id, conv, quant], outputs=out)
demo.launch() |