import os import shutil import subprocess import signal os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" import gradio as gr from huggingface_hub import HfApi from huggingface_hub import ModelCard from gradio_huggingfacehub_search import HuggingfaceHubSearch from apscheduler.schedulers.background import BackgroundScheduler HF_PATH = "https://huggingface.co/" CONV_TEMPLATES = [ "llama-3", "llama-3_1", "chatml", "chatml_nosystem", "qwen2", "open_hermes_mistral", "neural_hermes_mistral", "llama_default", "llama-2", "mistral_default", "gpt2", "codellama_completion", "codellama_instruct", "vicuna_v1.1", "conv_one_shot", "redpajama_chat", "rwkv_world", "rwkv", "gorilla", "gorilla-openfunctions-v2", "guanaco", "dolly", "oasst", "stablelm", "stablecode_completion", "stablecode_instruct", "minigpt", "moss", "LM", "stablelm-3b", "gpt_bigcode", "wizardlm_7b", "wizard_coder_or_math", "glm", "custom", # for web-llm only "phi-2", "phi-3", "phi-3-vision", "stablelm-2", "gemma_instruction", "orion", "llava", "hermes2_pro_llama3", "hermes3_llama-3_1", "tinyllama_v1_0", "aya-23", ] QUANTIZATIONS = ["q0f16", "q0f32", "q3f16_1", "q4f16_1", "q4f32_1", "q4f16_awq"] def button_click(profile: gr.OAuthProfile | None, hf_model_id, conv_template, quantization, oauth_token: gr.OAuthToken | None): if not oauth_token.token: raise ValueError("Log in to Huggingface to use this") api = HfApi(token=oauth_token.token) model_dir_name = hf_model_id.split("/")[1] mlc_model_name = model_dir_name + "-" + quantization + "-" + "MLC" os.system("mkdir -p dist/models") os.system("git lfs install") api.snapshot_download(repo_id=hf_model_id, local_dir=f"./dist/models/{model_dir_name}") os.system("mlc_llm convert_weight ./dist/models/" + model_dir_name + "/" + \ " --quantization " + quantization + \ " -o dist/" + mlc_model_name) os.system("mlc_llm gen_config ./dist/models/" + model_dir_name + "/" + \ " --quantization " + quantization + " --conv-template " + conv_template + \ " -o dist/" + mlc_model_name + "/") # push to HF user_name = api.whoami()["name"] api.create_repo(repo_id=f"{user_name}/{mlc_model_name}", private=True) api.upload_large_folder(folder_path=f"./dist/{mlc_model_name}", repo_id=f"{user_name}/{mlc_model_name}", repo_type="model") os.system("rm -rf dist/") return "successful" demo = gr.Interface( fn=button_click, inputs = [gr.LoginButton(), gr.Textbox(label="HF Model ID"), gr.Dropdown(CONV_TEMPLATES, label="Conversation Template"), gr.Dropdown(QUANTIZATIONS, label="Quantization Method")], outputs = "text" ) demo.launch()