mlo0ollm's picture
init
42d4b45
import gradio as gr
from pandasai_tool import pandas_ai_res
import time
# import csv or xlsx file and use input as df
# pandas_ai_res function will return resultr
with gr.Blocks() as demo:
gr.Label("πŸ—£λ§λ‘œ ν•˜λŠ” 데이터 뢄석")
gr.Markdown("(μ•ˆλ‚΄) 데이터 νŒŒμΌμ„ μ—…λ‘œλ“œν•˜κ³ , 뢄석을 λΆ€νƒν•˜μ„Έμš”")
# uploaded_file = gr.File(label="파일 μ—…λ‘œλ“œ")
# chatbot = gr.Chatbot()
# msg = gr.Textbox()
# clear = gr.ClearButton([msg, chatbot], label="μ±„νŒ… 기둝 μ‚­μ œ")
#
# def respond(file, message, chat_history):
# bot_message = pandas_ai_res(file, message)
# chat_history.append((message, bot_message))
# # time.sleep(2)
# return "", chat_history
#
# msg.submit(respond, [uploaded_file, msg, chatbot], [msg, chatbot])
gr.Interface(
fn=pandas_ai_res,
inputs=["file", "text"],
outputs="text"
)
if __name__ == "__main__":
demo.launch(share=True)
#
# import gradio as gr
# import pandas as pd
# from huggingface_hub.hf_api import create_repo, upload_file, HfApi
# from huggingface_hub.repository import Repository
# import subprocess
# import os
# import tempfile
#
#
# import sweetviz as sv
#
#
# def analyze_datasets(dataset, dataset_name, token, column=None, pairwise="off"):
# df = pd.read_csv(dataset.name)
# username = HfApi().whoami(token=token)["name"]
# if column is not None:
# analyze_report = sv.analyze(df, target_feat=column, pairwise_analysis=pairwise)
# else:
# analyze_report = sv.analyze(df, pairwise_analysis=pairwise)
# analyze_report.show_html('./index.html', open_browser=False)
# repo_url = create_repo(f"{username}/{dataset_name}", repo_type="space", token=token, space_sdk="static",
# private=False)
#
# upload_file(path_or_fileobj="./index.html", path_in_repo="index.html", repo_id=f"{username}/{dataset_name}",
# repo_type="space", token=token)
# readme = f"---\ntitle: {dataset_name}\nemoji: ✨\ncolorFrom: green\ncolorTo: red\nsdk: static\npinned: false\ntags:\n- dataset-report\n---"
# with open("README.md", "w+") as f:
# f.write(readme)
# upload_file(path_or_fileobj="./README.md", path_in_repo="README.md", repo_id=f"{username}/{dataset_name}",
# repo_type="space", token=token)
#
# return f"Your dataset report will be ready at {repo_url}"
#
#
#
#
#
#
# with gr.Blocks() as demo:
# main_title = gr.Markdown("""# Easy AnalysisπŸͺ„πŸŒŸβœ¨""")
# main_desc = gr.Markdown(
# """This app enables you to run three type of dataset analysis and pushes the interactive reports to your Hugging Face Hub profile as a Space. It uses SweetViz in the back.""")
# with gr.Tabs():
# with gr.TabItem("Analyze") as analyze:
# with gr.Row():
# with gr.Column():
# title = gr.Markdown(""" ## Analyze Dataset """)
# description = gr.Markdown(
# "Analyze a dataset or predictive variables against a target variable in a dataset (enter a column name to column section if you want to compare against target value). You can also do pairwise analysis, but it has quadratic complexity.")
# dataset = gr.File(label="Dataset")
# column = gr.Text(label="Compare dataset against a target variable (Optional)")
# pairwise = gr.Radio(["off", "on"], label="Enable pairwise analysis")
# token = gr.Textbox(label="Your Hugging Face Token")
# dataset_name = gr.Textbox(label="Dataset Name")
# pushing_desc = gr.Markdown(
# "This app needs your Hugging Face Hub token and a unique name for your dataset report.")
# inference_run = gr.Button("Infer")
# inference_progress = gr.StatusTracker(cover_container=True)
# outcome = gr.outputs.Textbox()
# inference_run.click(
# analyze_datasets,
# inputs=[dataset, dataset_name, token, column, pairwise],
# outputs=outcome,
# status_tracker=inference_progress,
# )
# with gr.TabItem("Compare Splits") as compare_splits:
# with gr.Row():
# with gr.Column():
# title = gr.Markdown(""" ## Compare Splits""")
# description = gr.Markdown(
# "Split a dataset and compare splits. You need to give a fraction, e.g. 0.8.")
# dataset = gr.File(label="Dataset")
# split_ratio = gr.Number(label="Split Ratios")
# pushing_desc = gr.Markdown(
# "This app needs your Hugging Face Hub token and a unique name for your dataset report.")
# token = gr.Textbox(label="Your Hugging Face Token")
# dataset_name = gr.Textbox(label="Dataset Name")
# inference_run = gr.Button("Infer")
# inference_progress = gr.StatusTracker(cover_container=True)
#
# outcome = gr.outputs.Textbox()
# inference_run.click(
# compare_dataset_splits,
# inputs=[dataset, dataset_name, token, split_ratio],
# outputs=outcome,
# status_tracker=inference_progress,
# )
#
# with gr.TabItem("Compare Subsets") as compare_subsets:
# with gr.Row():
# with gr.Column():
# title = gr.Markdown(""" ## Compare Subsets""")
# description = gr.Markdown(
# "Compare subsets of a dataset, e.g. you can pick Age Group column and compare adult category against young.")
# dataset = gr.File(label="Dataset")
# column = gr.Text(label="Enter column:")
# category = gr.Text(label="Enter category:")
# pushing_desc = gr.Markdown(
# "This app needs your Hugging Face Hub token and a unique name for your dataset report.")
# token = gr.Textbox(label="Your Hugging Face Token")
# dataset_name = gr.Textbox(label="Dataset Name")
# inference_run = gr.Button("Run Analysis")
# inference_progress = gr.StatusTracker(cover_container=True)
#
# outcome = gr.outputs.Textbox()
# inference_run.click(
# compare_column_values,
# inputs=[dataset, dataset_name, token, column, category],
# outputs=outcome,
# status_tracker=inference_progress,
# )