Spaces:
Build error
Build error
import gradio as gr | |
from pandasai_tool import pandas_ai_res | |
import time | |
# import csv or xlsx file and use input as df | |
# pandas_ai_res function will return resultr | |
with gr.Blocks() as demo: | |
gr.Label("π£λ§λ‘ νλ λ°μ΄ν° λΆμ") | |
gr.Markdown("(μλ΄) λ°μ΄ν° νμΌμ μ λ‘λνκ³ , λΆμμ λΆννμΈμ") | |
# uploaded_file = gr.File(label="νμΌ μ λ‘λ") | |
# chatbot = gr.Chatbot() | |
# msg = gr.Textbox() | |
# clear = gr.ClearButton([msg, chatbot], label="μ±ν κΈ°λ‘ μμ ") | |
# | |
# def respond(file, message, chat_history): | |
# bot_message = pandas_ai_res(file, message) | |
# chat_history.append((message, bot_message)) | |
# # time.sleep(2) | |
# return "", chat_history | |
# | |
# msg.submit(respond, [uploaded_file, msg, chatbot], [msg, chatbot]) | |
gr.Interface( | |
fn=pandas_ai_res, | |
inputs=["file", "text"], | |
outputs="text" | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |
# | |
# import gradio as gr | |
# import pandas as pd | |
# from huggingface_hub.hf_api import create_repo, upload_file, HfApi | |
# from huggingface_hub.repository import Repository | |
# import subprocess | |
# import os | |
# import tempfile | |
# | |
# | |
# import sweetviz as sv | |
# | |
# | |
# def analyze_datasets(dataset, dataset_name, token, column=None, pairwise="off"): | |
# df = pd.read_csv(dataset.name) | |
# username = HfApi().whoami(token=token)["name"] | |
# if column is not None: | |
# analyze_report = sv.analyze(df, target_feat=column, pairwise_analysis=pairwise) | |
# else: | |
# analyze_report = sv.analyze(df, pairwise_analysis=pairwise) | |
# analyze_report.show_html('./index.html', open_browser=False) | |
# repo_url = create_repo(f"{username}/{dataset_name}", repo_type="space", token=token, space_sdk="static", | |
# private=False) | |
# | |
# upload_file(path_or_fileobj="./index.html", path_in_repo="index.html", repo_id=f"{username}/{dataset_name}", | |
# repo_type="space", token=token) | |
# readme = f"---\ntitle: {dataset_name}\nemoji: β¨\ncolorFrom: green\ncolorTo: red\nsdk: static\npinned: false\ntags:\n- dataset-report\n---" | |
# with open("README.md", "w+") as f: | |
# f.write(readme) | |
# upload_file(path_or_fileobj="./README.md", path_in_repo="README.md", repo_id=f"{username}/{dataset_name}", | |
# repo_type="space", token=token) | |
# | |
# return f"Your dataset report will be ready at {repo_url}" | |
# | |
# | |
# | |
# | |
# | |
# | |
# with gr.Blocks() as demo: | |
# main_title = gr.Markdown("""# Easy Analysisπͺπβ¨""") | |
# main_desc = gr.Markdown( | |
# """This app enables you to run three type of dataset analysis and pushes the interactive reports to your Hugging Face Hub profile as a Space. It uses SweetViz in the back.""") | |
# with gr.Tabs(): | |
# with gr.TabItem("Analyze") as analyze: | |
# with gr.Row(): | |
# with gr.Column(): | |
# title = gr.Markdown(""" ## Analyze Dataset """) | |
# description = gr.Markdown( | |
# "Analyze a dataset or predictive variables against a target variable in a dataset (enter a column name to column section if you want to compare against target value). You can also do pairwise analysis, but it has quadratic complexity.") | |
# dataset = gr.File(label="Dataset") | |
# column = gr.Text(label="Compare dataset against a target variable (Optional)") | |
# pairwise = gr.Radio(["off", "on"], label="Enable pairwise analysis") | |
# token = gr.Textbox(label="Your Hugging Face Token") | |
# dataset_name = gr.Textbox(label="Dataset Name") | |
# pushing_desc = gr.Markdown( | |
# "This app needs your Hugging Face Hub token and a unique name for your dataset report.") | |
# inference_run = gr.Button("Infer") | |
# inference_progress = gr.StatusTracker(cover_container=True) | |
# outcome = gr.outputs.Textbox() | |
# inference_run.click( | |
# analyze_datasets, | |
# inputs=[dataset, dataset_name, token, column, pairwise], | |
# outputs=outcome, | |
# status_tracker=inference_progress, | |
# ) | |
# with gr.TabItem("Compare Splits") as compare_splits: | |
# with gr.Row(): | |
# with gr.Column(): | |
# title = gr.Markdown(""" ## Compare Splits""") | |
# description = gr.Markdown( | |
# "Split a dataset and compare splits. You need to give a fraction, e.g. 0.8.") | |
# dataset = gr.File(label="Dataset") | |
# split_ratio = gr.Number(label="Split Ratios") | |
# pushing_desc = gr.Markdown( | |
# "This app needs your Hugging Face Hub token and a unique name for your dataset report.") | |
# token = gr.Textbox(label="Your Hugging Face Token") | |
# dataset_name = gr.Textbox(label="Dataset Name") | |
# inference_run = gr.Button("Infer") | |
# inference_progress = gr.StatusTracker(cover_container=True) | |
# | |
# outcome = gr.outputs.Textbox() | |
# inference_run.click( | |
# compare_dataset_splits, | |
# inputs=[dataset, dataset_name, token, split_ratio], | |
# outputs=outcome, | |
# status_tracker=inference_progress, | |
# ) | |
# | |
# with gr.TabItem("Compare Subsets") as compare_subsets: | |
# with gr.Row(): | |
# with gr.Column(): | |
# title = gr.Markdown(""" ## Compare Subsets""") | |
# description = gr.Markdown( | |
# "Compare subsets of a dataset, e.g. you can pick Age Group column and compare adult category against young.") | |
# dataset = gr.File(label="Dataset") | |
# column = gr.Text(label="Enter column:") | |
# category = gr.Text(label="Enter category:") | |
# pushing_desc = gr.Markdown( | |
# "This app needs your Hugging Face Hub token and a unique name for your dataset report.") | |
# token = gr.Textbox(label="Your Hugging Face Token") | |
# dataset_name = gr.Textbox(label="Dataset Name") | |
# inference_run = gr.Button("Run Analysis") | |
# inference_progress = gr.StatusTracker(cover_container=True) | |
# | |
# outcome = gr.outputs.Textbox() | |
# inference_run.click( | |
# compare_column_values, | |
# inputs=[dataset, dataset_name, token, column, category], | |
# outputs=outcome, | |
# status_tracker=inference_progress, | |
# ) | |